Model-independent approach for incorporating interference effects in collider searches for new resonances ${ }^{1}$

S. Frixione, L. Roos, E. Ting, E. Vryonidou, M. White, A. G. Williams

Early Career Research Workshop 2021
interactions / force carriers (bosons)
,

ATLAS-CONF-2020-037

ATLAS-CONF-2020-037

J. High Energ. Phys. 96 (2017)
J. High Energ. Phys. 07 (2016)

Introduction

We want to characterise search results in a model-independent manner, whilst accounting for possible interference contributions...

- adopt a bottom-up approach, rather than top-down
- possible BSM lineshapes are largely constrained by QFT
- functional form that provides basis for possible (S+I) lineshapes

Introduction

We want to characterise search results in a model-independent manner, whilst accounting for possible interference contributions...

- adopt a bottom-up approach, rather than top-down
- possible BSM lineshapes are largely constrained by QFT
- functional form that provides basis for possible (S+I) lineshapes

Assumptions:

Introduction

We want to characterise search results in a model-independent manner, whilst accounting for possible interference contributions...

- adopt a bottom-up approach, rather than top-down
- possible BSM lineshapes are largely constrained by QFT
- functional form that provides basis for possible (S+I) lineshapes

Assumptions:

- work with invariant mass of resonance

Introduction

We want to characterise search results in a model-independent manner, whilst accounting for possible interference contributions...

- adopt a bottom-up approach, rather than top-down
- possible BSM lineshapes are largely constrained by QFT
- functional form that provides basis for possible (S+I) lineshapes

Assumptions:

- work with invariant mass of resonance
- one resonance at a time

Introduction

We want to characterise search results in a model-independent manner, whilst accounting for possible interference contributions...

- adopt a bottom-up approach, rather than top-down
- possible BSM lineshapes are largely constrained by QFT
- functional form that provides basis for possible (S+I) lineshapes

Assumptions:

- work with invariant mass of resonance
- one resonance at a time
- single partonic channel

Partonic amplitude:

$$
\begin{equation*}
\bar{A}_{h}\left(q^{2}\right)=\frac{S_{h}\left(q^{2}\right)}{q^{2}-m^{2}+i m \Gamma}+\frac{B_{h}\left(q^{2}\right)}{m^{2}} \tag{1}
\end{equation*}
$$

- $q^{2}=$ resonance virtuality $=$ squared invariant mass
- $m=$ resonance mass
- 「 = resonance width
- subscript h denotes helicity configuration

Write complex phases explicitly:

$$
\begin{equation*}
S_{h}\left(q^{2}\right)=\left|S_{h}\left(q^{2}\right)\right| \exp \left[i \xi_{h}\left(q^{2}\right)\right], \quad B_{h}\left(q^{2}\right)=\left|B_{h}\left(q^{2}\right)\right| \exp \left[i \chi_{h}\left(q^{2}\right)\right] \tag{2}
\end{equation*}
$$

Write complex phases explicitly:

$$
\begin{equation*}
S_{h}\left(q^{2}\right)=\left|S_{h}\left(q^{2}\right)\right| \exp \left[i \xi_{h}\left(q^{2}\right)\right], \quad B_{h}\left(q^{2}\right)=\left|B_{h}\left(q^{2}\right)\right| \exp \left[i \chi_{h}\left(q^{2}\right)\right] \tag{2}
\end{equation*}
$$

Then, the square of the amplitude in eq. (1) is:

$$
\begin{align*}
\left|\bar{A}_{h}\left(q^{2}\right)\right|^{2} & =\frac{\left|S_{h}\left(q^{2}\right)\right|^{2}}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}}+\frac{\left|B_{h}\left(q^{2}\right)\right|^{2}}{m^{4}} \tag{3}\\
& +\frac{2}{m^{2}} \frac{\left|S_{h}\left(q^{2}\right)\right|\left|B_{h}\left(q^{2}\right)\right|}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}}\left[\left(q^{2}-m^{2}\right) \cos \phi_{h}\left(q^{2}\right)+m \Gamma \sin \phi_{h}\left(q^{2}\right)\right]
\end{align*}
$$

where

$$
\begin{equation*}
\phi_{h}\left(q^{2}\right)=\xi_{h}\left(q^{2}\right)-\chi_{h}\left(q^{2}\right) \tag{4}
\end{equation*}
$$

Write complex phases explicitly:

$$
\begin{equation*}
S_{h}\left(q^{2}\right)=\left|S_{h}\left(q^{2}\right)\right| \exp \left[i \xi_{h}\left(q^{2}\right)\right], \quad B_{h}\left(q^{2}\right)=\left|B_{h}\left(q^{2}\right)\right| \exp \left[i \chi_{h}\left(q^{2}\right)\right] \tag{2}
\end{equation*}
$$

Then, the square of the amplitude in eq. (1) is:

$$
\begin{align*}
\left|\bar{A}_{h}\left(q^{2}\right)\right|^{2} & =\frac{\left|S_{h}\left(q^{2}\right)\right|^{2}}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}}+\frac{\left|B_{h}\left(q^{2}\right)\right|^{2}}{m^{4}} \tag{3}\\
& +\frac{2}{m^{2}} \frac{\left|S_{h}\left(q^{2}\right)\right|\left|B_{h}\left(q^{2}\right)\right|}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}}\left[\left(q^{2}-m^{2}\right) \cos \phi_{h}\left(q^{2}\right)+m \Gamma \sin \phi_{h}\left(q^{2}\right)\right]
\end{align*}
$$

where

$$
\begin{equation*}
\phi_{h}\left(q^{2}\right)=\xi_{h}\left(q^{2}\right)-\chi_{h}\left(q^{2}\right) \tag{4}
\end{equation*}
$$

\rightarrow Eq. (3), multiplied by flux and phase space factors, is the "full" differential cross section with $\mathrm{S}+\mathrm{B}+\mathrm{I}$ contributions

Flux and phase space factors cancel out in taking the ratio:

$$
\begin{equation*}
\frac{\left|\bar{A}\left(q^{2}\right)\right|^{2}}{\left|\bar{B}\left(q^{2}\right)\right|^{2}}=\frac{m^{4} E\left(q^{2}\right)}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}}+\frac{m^{2}\left(q^{2}-m^{2}\right) O\left(q^{2}\right)}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}}+1 \tag{5}
\end{equation*}
$$

where the "even" and "odd" functions are:

$$
\begin{align*}
& E\left(q^{2}\right)=R\left(q^{2}\right)^{2}+2 \frac{\Gamma}{m} R\left(q^{2}\right) \sin \left(\phi\left(q^{2}\right)\right) \tag{6}\\
& O\left(q^{2}\right)=2 R\left(q^{2}\right) \cos \left(\phi\left(q^{2}\right)\right) \tag{7}
\end{align*}
$$

with:

$$
\begin{equation*}
R\left(q^{2}\right)=\frac{\left|S\left(q^{2}\right)\right|}{\left|B\left(q^{2}\right)\right|} \tag{8}
\end{equation*}
$$

Taylor expand $E\left(q^{2}\right)$ and $O\left(q^{2}\right)$ around $q^{2}=m^{2}$:

$$
\begin{equation*}
\frac{\left|\bar{A}\left(q^{2}\right)\right|^{2}}{\left|\bar{B}\left(q^{2}\right)\right|^{2}}=\frac{m^{4}}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}} \sum_{k=0}^{\infty} \frac{a_{k}}{k!}\left(\frac{q^{2}}{m^{2}}-1\right)^{k}+1 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=E^{(k)}\left(m^{2}\right)+k O^{(k-1)}\left(m^{2}\right) . \tag{10}
\end{equation*}
$$

Taylor expand $E\left(q^{2}\right)$ and $O\left(q^{2}\right)$ around $q^{2}=m^{2}$:

$$
\begin{equation*}
\frac{\left|\bar{A}\left(q^{2}\right)\right|^{2}}{\left|\bar{B}\left(q^{2}\right)\right|^{2}}=\frac{m^{4}}{\left(q^{2}-m^{2}\right)^{2}+m^{2} \Gamma^{2}} \sum_{k=0}^{\infty} \frac{a_{k}}{k!}\left(\frac{q^{2}}{m^{2}}-1\right)^{k}+1 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=E^{(k)}\left(m^{2}\right)+k O^{(k-1)}\left(m^{2}\right) . \tag{10}
\end{equation*}
$$

- in the neighbourhood of m^{2}, we can obtain an approximate solution
- truncate at some order $K \Longrightarrow$ functional form, with parameters:

$$
\begin{equation*}
\left\{m, \Gamma, a_{0}, \ldots a_{K}\right\} \tag{11}
\end{equation*}
$$

for which values can be found via a fit to data.
a_{i} can be related to quantities with more direct physical interpretation e.g. for $K=2$:

$$
\begin{align*}
a_{0}= & R^{(0)^{2}}+2 \frac{\Gamma}{m} R^{(0)} s_{\phi}^{(0)} \tag{12}\\
a_{1}= & 2\left[R^{(0)} R^{(1)}+R^{(0)} c_{\phi}^{(0)}+\frac{\Gamma}{m}\left(R^{(0)} s_{\phi}^{(1)}+R^{(1)} s_{\phi}^{(0)}\right)\right] \tag{13}\\
a_{2}= & 2\left[R^{(1)^{2}}+R^{(0)} R^{(2)}+2 R^{(0)} c_{\phi}^{(1)}+2 R^{(1)} c_{\phi}^{(0)}\right. \\
& \left.+\frac{\Gamma}{m}\left(R^{(0)} s_{\phi}^{(2)}+2 R^{(1)} s_{\phi}^{(1)}+R^{(2)} s_{\phi}^{(0)}\right)\right] \tag{14}
\end{align*}
$$

a_{i} can be related to quantities with more direct physical interpretation e.g. for $K=2$:

$$
\begin{align*}
a_{0}= & R^{(0)^{2}}+2 \frac{\Gamma}{m} R^{(0)} s_{\phi}^{(0)} \tag{12}\\
a_{1}= & 2\left[R^{(0)} R^{(1)}+R^{(0)} c_{\phi}^{(0)}+\frac{\Gamma}{m}\left(R^{(0)} s_{\phi}^{(1)}+R^{(1)} s_{\phi}^{(0)}\right)\right] \tag{13}\\
a_{2}= & 2\left[R^{(1)^{2}}+R^{(0)} R^{(2)}+2 R^{(0)} c_{\phi}^{(1)}+2 R^{(1)} c_{\phi}^{(0)}\right. \\
& \left.+\frac{\Gamma}{m}\left(R^{(0)} s_{\phi}^{(2)}+2 R^{(1)} s_{\phi}^{(1)}+R^{(2)} s_{\phi}^{(0)}\right)\right] \tag{14}
\end{align*}
$$

- physics-driven assumptions can reduce the number of parameters e.g. assume phase to vary more slowly than $R\left(q^{2}\right)$
\rightarrow retain only $0^{\text {th }}$ order phase terms
\Longrightarrow two possible and equivalent sets of general parameters:
\Longrightarrow two possible and equivalent sets of general parameters:
$\mathbf{T}_{R}:\left\{m, \Gamma, R^{(0)}, R^{(1)}, R^{(2)}, c_{\phi}^{(0)}, s_{\phi}^{(0)}\right\}$
(15)
\Longrightarrow two possible and equivalent sets of general parameters:
$\mathbf{T}_{R}:\left\{m, \Gamma, R^{(0)}, R^{(1)}, R^{(2)}, c_{\phi}^{(0)}, s_{\phi}^{(0)}\right\} \quad \mathbf{T}_{a}:\left\{m, \Gamma, a_{0}, a_{1}, a_{2}\right\}$
(15)
\Longrightarrow two possible and equivalent sets of general parameters:
$\mathbf{T}_{R}:\left\{m, \Gamma, R^{(0)}, R^{(1)}, R^{(2)}, c_{\phi}^{(0)}, s_{\phi}^{(0)}\right\} \quad \mathbf{T}_{a}:\left\{m, \Gamma, a_{0}, a_{1}, a_{2}\right\}$
- more direct physical interpretation
- separable S and I
- underconstrained
- neater results
- computationally cheaper
- less direct interpretation

Summary

- re-interpretability of resonance search results is important
- using general QFT arguments, arrived at template functional form that can describe $\mathrm{S}+\mathrm{I}+\mathrm{B}$ lineshapes
- two possible parametrisations: \mathbf{T}_{R} and \mathbf{T}_{a}, each with pros and cons
- theorists can compute these parameters for their pet theory and compare them to experimental bounds
- invite you to check out paper for more: EPJC 80, 1174 (2020)

Summary

- re-interpretability of resonance search results is important
- using general QFT arguments, arrived at template functional form that can describe $\mathrm{S}+\mathrm{I}+\mathrm{B}$ lineshapes
- two possible parametrisations: \mathbf{T}_{R} and \mathbf{T}_{a}, each with pros and cons
- theorists can compute these parameters for their pet theory and compare them to experimental bounds
- invite you to check out paper for more: EPJC 80, 1174 (2020)

Thanks!

Backup

What happened to helicity indices? / Why dintinguish c_{ϕ} and s_{ϕ} ?
In the case of multiple helicity configurations, the relevant amplitudes are:

$$
\begin{equation*}
\left|\bar{A}\left(q^{2}\right)\right|^{2}=\sum_{h=1}^{N}\left|\bar{A}_{h}\left(q^{2}\right)\right|^{2}, \quad\left|\bar{B}\left(q^{2}\right)\right|^{2}=\sum_{h=1}^{N}\left|\bar{B}_{h}\left(q^{2}\right)\right|^{2} \tag{R.17}
\end{equation*}
$$

These amount to a redefinition of $R\left(q^{2}\right)$ and phase-related terms:

$$
\begin{align*}
& R\left(q^{2}\right)=\sqrt{\frac{\sum_{h=1}^{N}\left|S_{h}\left(q^{2}\right)\right|^{2}}{\sum_{h=1}^{N}\left|B_{h}\left(q^{2}\right)\right|^{2}}} \tag{R.18}\\
& c_{\phi}\left(q^{2}\right)=\frac{\sum_{h=1}^{N}\left|S_{h}\left(q^{2}\right)\right|\left|B_{h}\left(q^{2}\right)\right| \cos \phi_{h}\left(q^{2}\right)}{\sqrt{\sum_{h=1}^{N}\left|S_{h}\left(q^{2}\right)\right|^{2} \sum_{h=1}^{N}\left|B_{h}\left(q^{2}\right)\right|^{2}}} \tag{R.19}\\
& s_{\phi}\left(q^{2}\right)=\frac{\sum_{h=1}^{N}\left|S_{h}\left(q^{2}\right)\right|\left|B_{h}\left(q^{2}\right)\right| \sin \phi_{h}\left(q^{2}\right)}{\sqrt{\sum_{h=1}^{N}\left|S_{h}\left(q^{2}\right)\right|^{2} \sum_{h=1}^{N}\left|B_{h}\left(q^{2}\right)\right|^{2}}} \tag{R.20}
\end{align*}
$$

\rightarrow functional forms remain unchanged!

