

Metrology Update

Zuzana Slavkovská Postdoctoral Fellow Australian National University Department of Nuclear Physics

ECR Workshop 11-12 February 2021

Froehlich

Steve Tims

Zuzana Slavkovská

Development of ultra-sensitive techniques to measure radionuclides

Michaela

Froehlich

Steve Tims

Zuzana Slavkovská

SABRE: Impurity estimation
Low-background needed
How much radioactivity present?

Development of ultra-sensitive techniques to measure radionuclides

Michaela

Froehlich

Steve Tims

Zuzana Slavkovská

1. Chemistry

- procedures

- chemicals

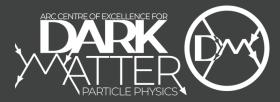
2. AMS (Accelerator Mass Spectrometry) ANU + ANSTO

- ultra-sensitive atom counting
- radio-/ stable nuclide ratios down to 10^{-12} - 10^{-17}
- limited to isobaric interference

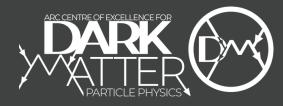
Development of ultra-sensitive techniques to measure radionuclides

Michaela

Froehlich

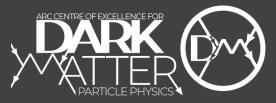


Steve Tims


Zuzana Slavkovská

SABRE: Impurity estimation Low-background needed

How much radioactivity present? - ¹²⁹I, ⁴⁰K, ²¹⁰Pb, ²³²Th, ²³⁸U

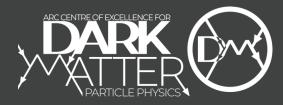

- t_{1/2} (¹²⁹I) = 15.7 Ma
- From nuclear activities
- Routine AMS isotope, ¹²⁹I/¹²⁷I

How much radioactivity present?

- t_{1/2} (¹²⁹I) = 15.7 Ma
- From nuclear activities
- Routine AMS isotope, ¹²⁹I/¹²⁷I

Type of Nal Powder	¹²⁹ I/ ¹²⁷ I (x10 ⁻¹⁵)	Activity µBq/g
Growth Grade (2016)	189 +/- 13	1.10
Astro Grade (2016)	161 +/- 11	0.91
Commercial Nal (2016)	154 +/- 14	0.87

- $t_{1/2}$ (⁴⁰K) = 1.25 Ga, primordial origin, ⁴⁰K/³⁹K = 1.255 x 10⁻⁴
- Collaboration with Research School of Earth Sciences at ANU (ICP-MS) – Gabriel Enge



- $t_{1/2}$ (⁴⁰K) = 1.25 Ga, primordial origin, ⁴⁰K/³⁹K = 1.255 x 10⁻⁴
- Collaboration with Research School of Earth Sciences at ANU (ICP-MS) – Gabriel Enge

Type of Nal Powder	³⁹ K Content ug/g	Activity
Growth Grade (2016)	340	10 mBq/g
Astro Grade (2016)	0.140	4.4 μBq/g
New material (2021)	?	?

- $t_{1/2}$ (²¹⁰Pb) = 22.2 a, naturally occurring in environment
- Not enough Pb to produce AMS sample after extraction from Nal
- Optimal carrier, as low ²¹⁰Pb content as possible

- $t_{1/2}$ (²¹⁰Pb) = 22.2 a, naturally occurring in environment
- Not enough Pb to produce AMS sample after extraction from Nal
- Optimal carrier, as low ²¹⁰Pb content as possible

Examine old lead: 16th century church roof

Detector shielding

Idea: Leach the material several times Remove environmental ²¹⁰Pb from surface

- 1. Chemistry
- 2. Pressing AMS samples
- 3. Measurement of samples

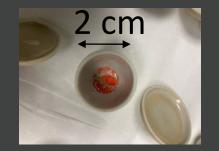
- 1. <u>Chemistry</u>
- a) Leach in HNO₃

1. <u>Chemistry</u>

a) Leach in HNO_3

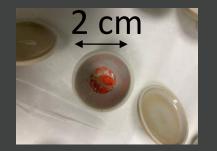
 $\sum M$


b) Dry on hot plate (70°C) – Pb(NO₃)₂


1. <u>Chemistry</u>

- a) Leach in HNO₃
- b) Dry on hot plate $(70^{\circ}C) Pb(NO_3)_2$
- c) Transform to **PbO** in muffle furnace (500°C)

- 1. Chemistry
- 2. AMS sample preparation



- 1. Chemistry
- 2. <u>AMS sample preparation</u>
- a) Different holder materials
- b) Different additives
- c) Different additive amount

Nb

Al

Zuzana Slavkovská: Metrology Update

Ag

- 1. Chemistry
- 2. AMS sample preparation
- 3. AMS Measurement

ANSTO 8-9 January 2021 collaboration with M. Hotchkis

VEGA at ANSTO

3. AMS Measurement: Results

- SS: 50% more output than Cu and Al
- Poor output with Nb and Al

- Ratios 1:2 – 1:4 similar

Outlook:

- PbO vs. PbF₂ Better performance?
- Alternative materials as carrier
- Improve the method sensitivity
- Further beamtimes planned at ANSTO in 2021

Outlook:

- PbO vs. PbF₂ Better performance?
- Alternative materials as carrier
- Improve the method sensitivity
- Further beamtimes planned at ANSTO in 2021

Thank you for your attention!

Australian Government Australian Research Council

INTERNATIONAL PARTNER ORGANISATIONS:

UNIVERSITEIT VAN AMSTERDAM

