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Neural Networks

Figure: An example of an artificial neural network.
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Neural Networks
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where,

aij is the output (also known as activation value) of the j th node in

the i th layer,

σ is the chosen activation function for that layer,

w i
jk is the weight connecting the kth node in the (i − 1)th layer to the

j th node in the i th layer,

ai−1
k is the output of the kth node in the (i − 1)th layer,

bij is the bias value of the j th node in the i th layer.
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Autoencoders

Figure: An example of a simple autoencoder.
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XENON1T Detector
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XENON1T Detector Response Images

Figure: Top: An example of an 800×800 electron recoil event image before (left)
and after (right) reducing the resolution to 75 × 75.
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Network Architecture

75 × 75 × 3 input layer

128 filters,
3 × 3 kernel size,
stride length of 3,
LeakyRelu activation with α = 0.05

Latent space has 512 nodes (256 means and 256 standard deviations)

Reflection of above architecture for decoder
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Training and Testing
Train the network for 200 epochs on 8000 electron recoil event images in
mini-batches of 100 and test on 2000.
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Figure: The reconstruction loss per epoch for the training and testing sets for the
CVAE.
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Signal and Background Reconstruction
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Figure: Normalised reconstruction loss distributions for the electron recoil
(background) sample and a 500 GeV WIMP particle (signal).
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Pseudo-data and Background Reconstruction
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Figure: The reconstruction loss distributions for the electron recoil (background)
sample and the pseudo-data sample normalised to realistic expected event count
for 5 years exposure.

A simple Chi-squared goodness of fit test, with background only model as
null hypothesis, can be rejected at 95% confidence.
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Summary and Conclusion

We covered:

Neural Networks

Convolutional Variational Autoencoders

XENON1T Detector

CVAE Reconstruction for Signal, Background and Pseudo-data
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Thank You
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