Convolutional Variational Autoencoders for Dark Matter Anomaly Detection

J. Herrero-Garcia, R. Patrick, A. Scaffidi

The University of Adelaide

riley.patrick@adelaide.edu.au

February 11, 2021

Overview

1 Introduction

2 Convolutional Autoencoders

3 Dark Matter

3

- ∢ ≣ →

< 4 ₽ × <

Neural Networks

Figure: An example of an artificial neural network.

3

<ロ> (日) (日) (日) (日) (日)

Neural Networks

$$a_j^i = \sigma \left(\sum_k (w_{jk}^i a_k^{i-1}) + b_j^i \right) \tag{1}$$

where,

- aⁱ_j is the output (also known as activation value) of the jth node in the ith layer,
- σ is the chosen activation function for that layer,
- w_{jk}^i is the weight connecting the k^{th} node in the $(i-1)^{\text{th}}$ layer to the j^{th} node in the i^{th} layer,
- a_k^{i-1} is the output of the k^{th} node in the $(i-1)^{\text{th}}$ layer,
- b_j^i is the bias value of the j^{th} node in the i^{th} layer.

Autoencoders

Figure: An example of a simple autoencoder.

Dark Matter CVAE

3

・ロン ・四 ・ ・ ヨン ・ ヨン

XENON1T Detector

Riley Patrick (UofA)

Dark Matter CVAE

February 11, 2021 6 / 14

3

<ロ> (日) (日) (日) (日) (日)

Reference

Convolutional Neural Networks for Direct Detection of Dark Matter

Charanjit K. Khosa,^{1, *} Lucy Mars,^{1, †} Joel Richards,^{1, ‡} and Veronica Sanz^{1, 2, 3, §}

¹Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK ²Alan Turing Institute, British Library, 96 Euston Road, London NW1 2DB, UK ³Instituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, E-46980, Valencia, Spain (Dated: August 3, 2020)

(日) (同) (三) (三)

XENON1T Detector Response Images

Figure: Top: An example of an 800×800 electron recoil event image before (left) and after (right) reducing the resolution to 75×75 .

Network Architecture

- $75 \times 75 \times 3$ input layer
- 128 filters,
 - 3×3 kernel size,
 - stride length of 3,
 - LeakyRelu activation with $\alpha=0.05$
- Latent space has 512 nodes (256 means and 256 standard deviations)
- Reflection of above architecture for decoder

Training and Testing

Train the network for 200 epochs on 8000 electron recoil event images in mini-batches of 100 and test on 2000.

Figure: The reconstruction loss per epoch for the training and testing sets for the CVAE.

Riley Patrick (UofA)

Dark Matter CVAE

February 11, 2021 10 / 14

Signal and Background Reconstruction

Figure: Normalised reconstruction loss distributions for the electron recoil (background) sample and a 500 GeV WIMP particle (signal) \rightarrow (\equiv) (\equiv)

Riley Patrick (UofA)

Dark Matter CVAE

February 11, 2021 11 / 14

Pseudo-data and Background Reconstruction

Figure: The reconstruction loss distributions for the electron recoil (background) sample and the pseudo-data sample normalised to realistic expected event $count_{\alpha, \infty}$

Riley Patrick (UofA)

Dark Matter CVAE

February 11, 2021 12 / 14

Summary and Conclusion

We covered:

- Neural Networks
- Convolutional Variational Autoencoders
- XENON1T Detector
- CVAE Reconstruction for Signal, Background and Pseudo-data

Thank You

2

<ロ> (日) (日) (日) (日) (日)