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Neural Networks

Figure: An example of an artificial neural network.
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Neural Networks
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e alis the output (also known as activation value) of the j* node in
the it" layer,
@ o is the chosen activation function for that layer,
° wjik is the weight connecting the k" node in the (i — 1)t layer to the
™ node in the it layer,
o a ! is the output of the k™" node in the (i — 1)™" layer,

o bl is the bias value of the /™ node in the /™ layer.
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Autoencoders

Figure: An example of a simple autoencoder.
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XENONI1T Detector
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XENONLIT Detector Response Images

Figure: Top: An example of an 800x800 electron recoil event image before (left)
and after (right) reducing the resolution to 75 x 75.
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Network Architecture

@ 75 x 75 x 3 input layer

128 filters,

3 x 3 kernel size,

stride length of 3,

LeakyRelu activation with a = 0.05

o Latent space has 512 nodes (256 means and 256 standard deviations)
@ Reflection of above architecture for decoder
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Training and Testing

Train the network for 200 epochs on 8000 electron recoil event images in
mini-batches of 100 and test on 2000.
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Figure: The reconstruction loss per epoch for the training and testing sets for the
CVAE.
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Signal and Background Reconstruction
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Figure: Normalised reconstruction loss distributions for the electron recoil
(background) sample and a 500 GeV WIMP particle (signal): - =
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Pseudo-data and Background Reconstruction
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Figure: The reconstruction loss distributions for the electron recoil (background)
sample and the pseudo-data sample normalised to realistic expected event count - ~
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Summary and Conclusion

We covered:
@ Neural Networks
@ Convolutional Variational Autoencoders
o XENONLIT Detector
@ CVAE Reconstruction for Signal, Background and Pseudo-data
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