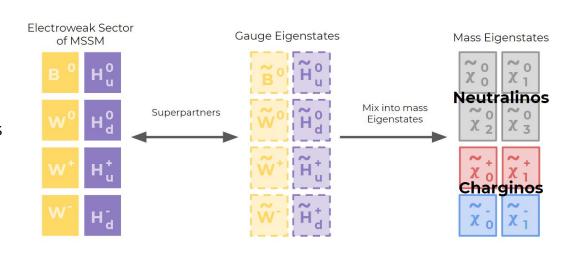


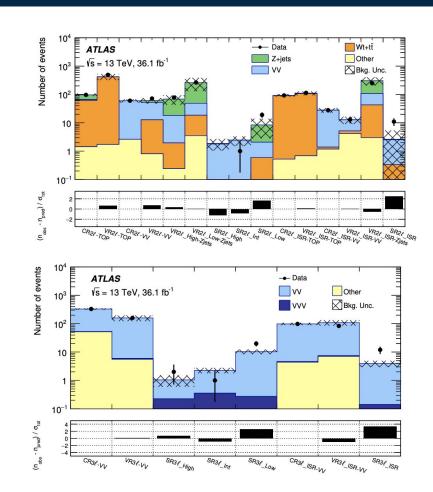
Electroweak Supersymmetry with Recursive Jigsaw Reconstruction

EARLY CAREER WORKSHOP


Jason Oliver

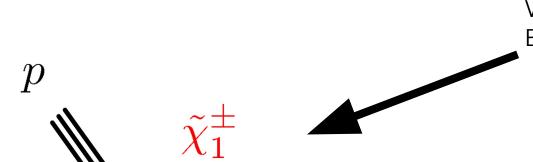
jason.oliver@adelaide.edu.au jaoliver@cern.ch

The Basics

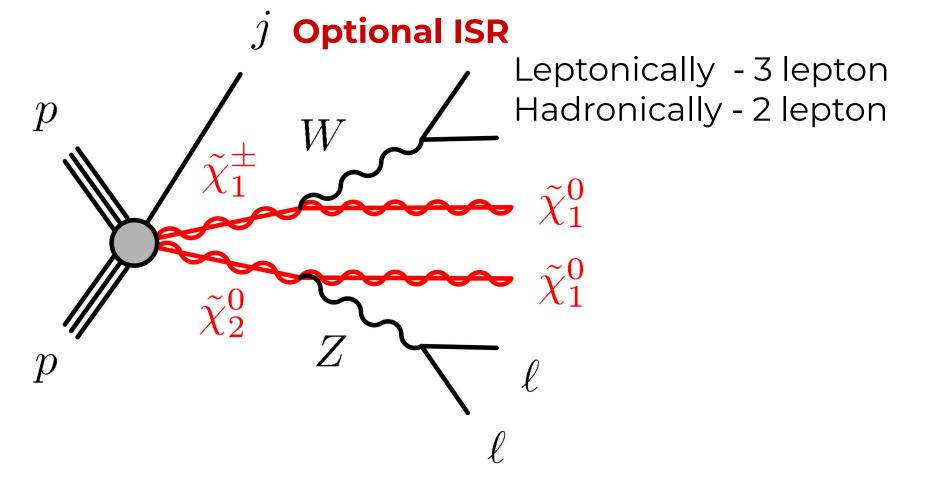

- Supersymmetry (SUSY) postulates there are (at least one) superpartner for all Standard Model particles
- Electroweak SUSY refers to the superpartners of the electroweak gauge boson (EWKinos) and sleptons
- The EWKinos mix to form mass eigenstates Charginos and Neutralinos
- In some situations electroweak production has higher cross sections and cleaner signatures than strong production we should look there too!

Neutralinos under certain conditions are **Dark Matter Candidates!**

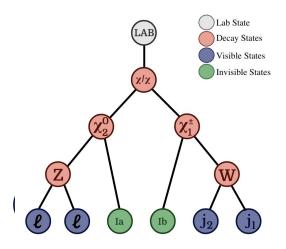
Motivation

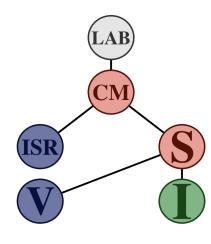

- In 2015-2016 an analysis targeting electroweak SUSY in 2 and 3 lepton final states found excesses in 4 orthogonal regions
 - SR2L_LOW
 - SR2L_ISR
 - SR3L_LOW
 - SR3L_ISR
- The analysis was frozen and a follow-up was issued

Recursive Jigsaw Reconstruction


Targeting a mass degenerate Wino-like Chargino-1 & Bino-like Neutralino-2 production

The Chargino decays to a W boson and Neutralino-1


We design our analysis around the **W** boson decays



Standard decay tree

SR2L_LOW & SR3L_LOW

ISR decay tree

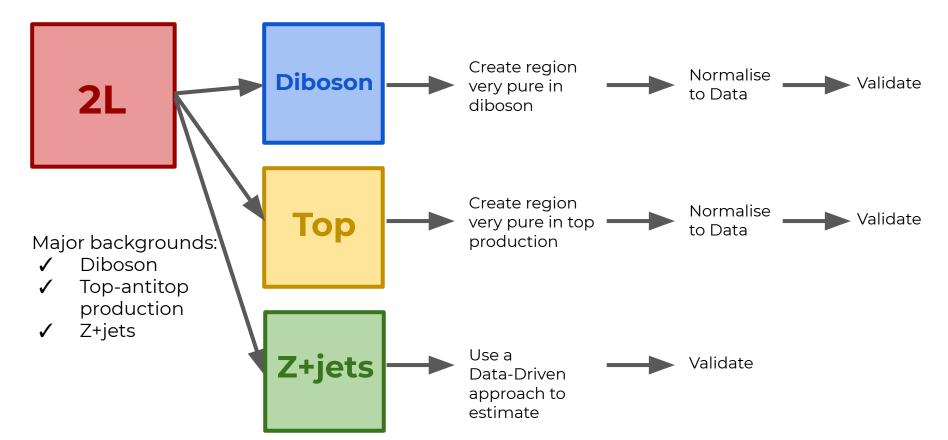
SR2L_ISR & SR3L_ISR

Our Analysis Approach

The goal for signal region design is Signal/Background

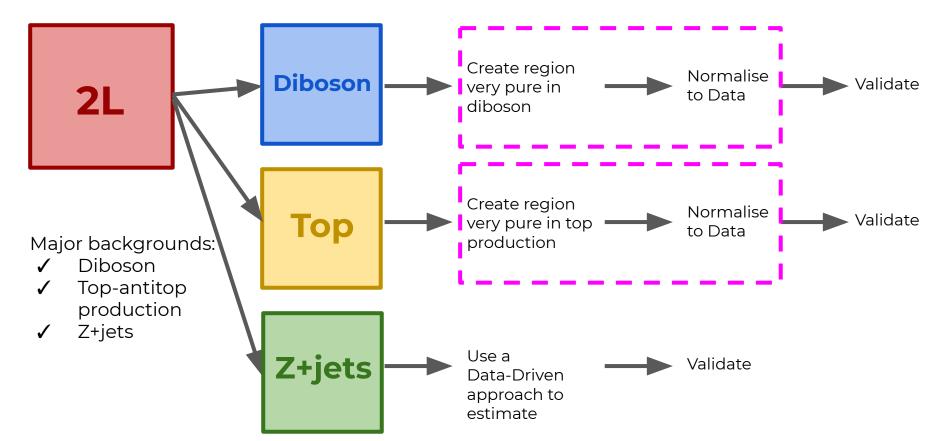
Major backgrounds:

- Diboson
- Top-antitop production
- Z+jets


Major backgrounds:

Diboson

For both **Standard** and **ISR** regions



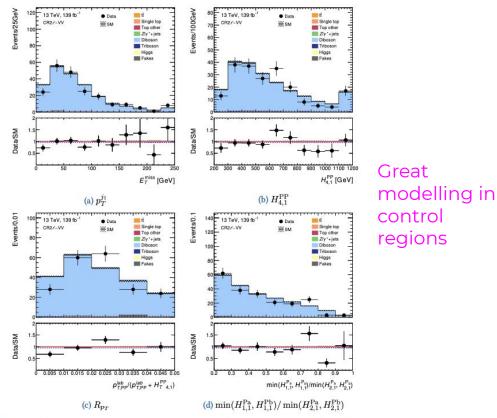


Figure 4.36: CR2 ℓ -VV: General modelling for $p_T^{j_1}$ in (a). We show $H_{4,1}^{PP}$ in (b). In (c) we show R_{p_T} . In (d) we show $\min(H_{1,1}^{\text{Pa}}, H_{1,1}^{\text{Pb}}) / \min(H_{2,1}^{\text{Pa}}, H_{2,1}^{\text{Pb}})$.

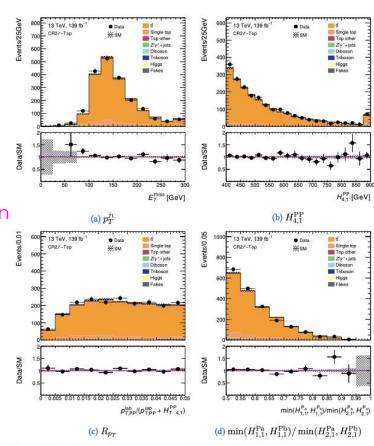
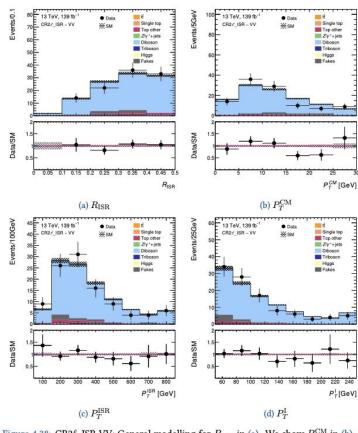



Figure 4.37: CR2 ℓ -Top: General modelling for $p_T^{j_1}$ in (a). We show $H_{4,1}^{\mathrm{PP}}$ in (b). In (c) we show R_{p_T} . In (d) we show $\min(H_{1,1}^{\mathrm{Pa}}, H_{1,1}^{\mathrm{Pb}})/\min(H_{2,1}^{\mathrm{Pa}}, H_{2,1}^{\mathrm{Pb}})$.

Great modelling in control regions

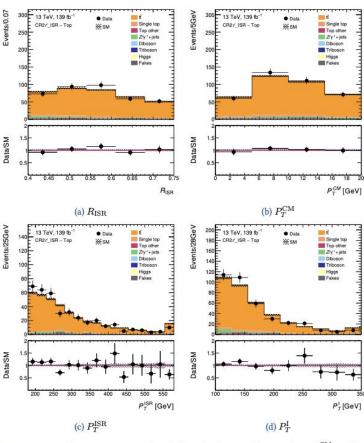
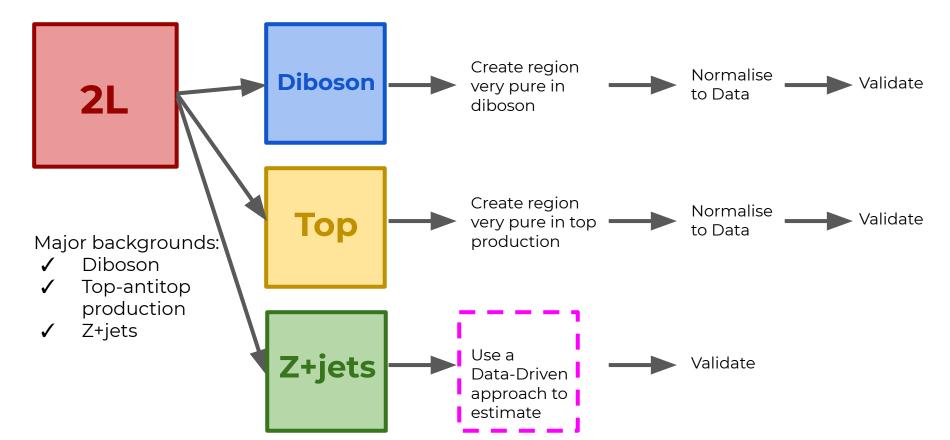



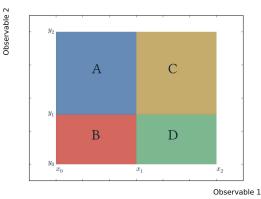
Figure 4.39: CR2 ℓ _ISR-Top: General modelling for $R_{\rm ISR}$ in (a). We show $P_T^{\rm CM}$ in (b). In (c) we show $P_T^{\rm ISR}$. In (d) we show $P_T^{\rm I}$.

Figure 4.38: CR2 ℓ _ISR-VV: General modelling for $R_{\rm ISR}$ in (a). We show $P_T^{\rm CM}$ in (b). In (c) we show P_T^{ISR} . In (d) we show P_T^{I} .

Our Z+jets estimation problem

- Models data poorly in SR
- X Large uncertainties
- Generator weights Incredibly large

Common problem:


"We can't simulate this well, what do we do?"

Answer: Let the data tell you whats happening!

Overview of the Method

- 1. Define your SR
- 2. Define regions A, B, C, and D
- 3. Calculate a data-driven estimate by subtracting non-Z+jets from data
- 4. Calculate an estimate in your SR(C)
- Account for systematic
 uncertainties by varying
 boundaries and non-dominant
 cross sections

2D ABCD plane

Data driven estimate

$$N_i = D_i - MC_i^{\text{non } Z + \text{jets}}$$

Relate the different regions via:

$$\frac{N_A}{N_B} = \frac{N_C}{N_D} \longrightarrow N_C = N_D \times \frac{N_A}{N_B}$$

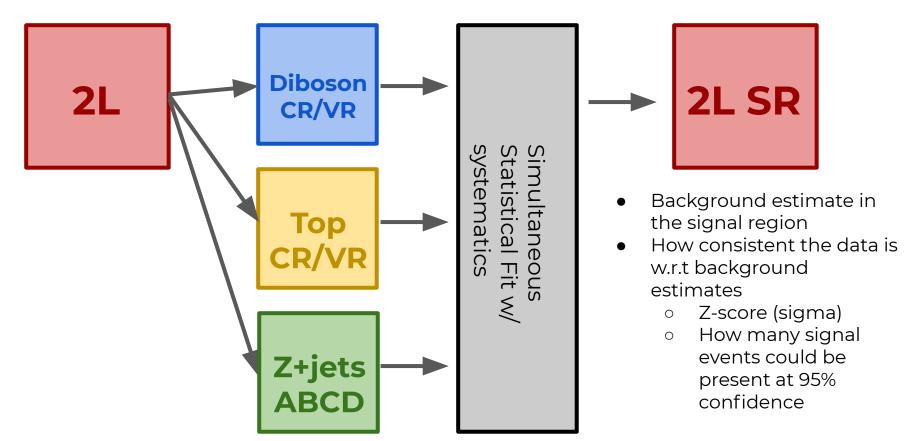
Our Z+jets estimation problem

MC

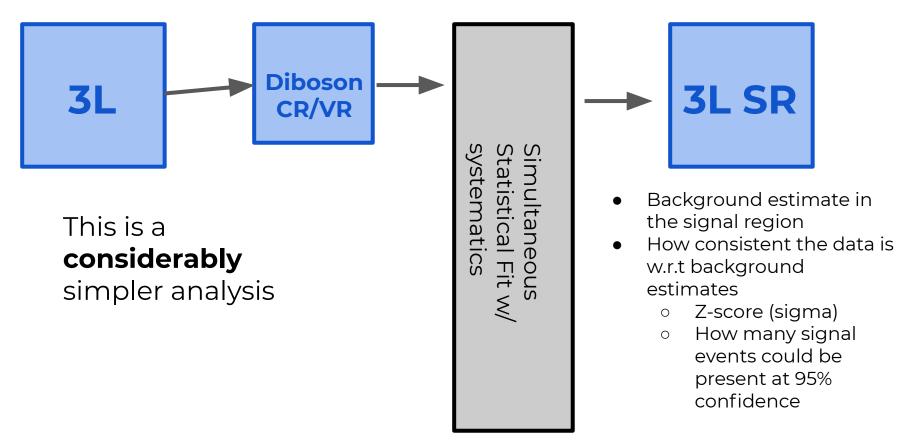
- Models data poorly in SR
- Large uncertainties
- Generator weights Incredibly large

ABCD

- Independent on Z+jets MC
- Smaller uncertainties
- Only estimate, no modelling


COMPARISON

Standard region estimate

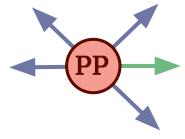

Region	STAT+SYS
Z+jets	
ABCD NZ+jets	29.24 ± 7.64 28.14 ± 17.3
Mij NZ+jets (CCDA)	0.000000 10.000 00.000 00.000 00.000
$N_{\rm MC}^{\rm Z+jets}({\rm STA})$	Γ) 42.20 ± 17.23

ISR region estimate

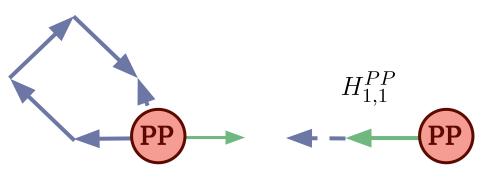
Region	STAT+SYS
$N_{\rm ABCD}^{\rm Z+jets}$	12.86 ± 7.48
$N_{\rm mij}^{\rm Z+jets}$	13.37 ± 18.27
$N_{\rm MC}^{\rm Z+jets}({\rm STAT})$	17.57 ± 1.82

Concluding Remarks

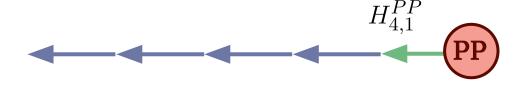
- Electroweak supersymmetry is and remains an interesting benchmark scenario
- We are following up on these two EWK regions from the 2015-2016 dataset
- By using Data-driven techniques we've improved upon passed results
- There is still plenty to learn :)
- The next decade of the LHC is primed to be an interesting one!


Thanks for the Opportunity to Speak!

Additional Material



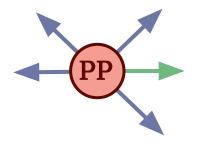
An **event** defined in the **p** frame



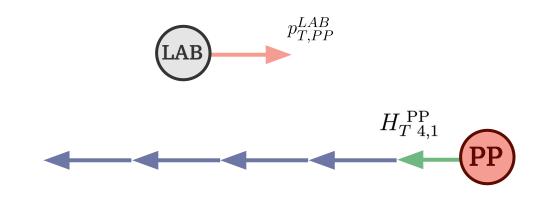
Arrows are object's four vectors in the frame

Vector Sum of Visibles + Invisibles

Scalar Sum of Visibles + Invisibles



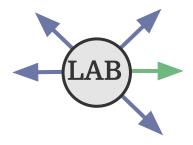
We take **ratios** of these quantities



№ frame drift - RPT

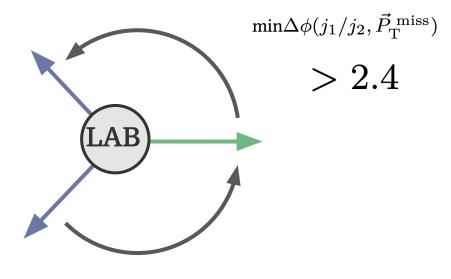
An **event** defined in the **p** frame

Arrows are object's four vectors in the preframe


Momentum proportion of @frame

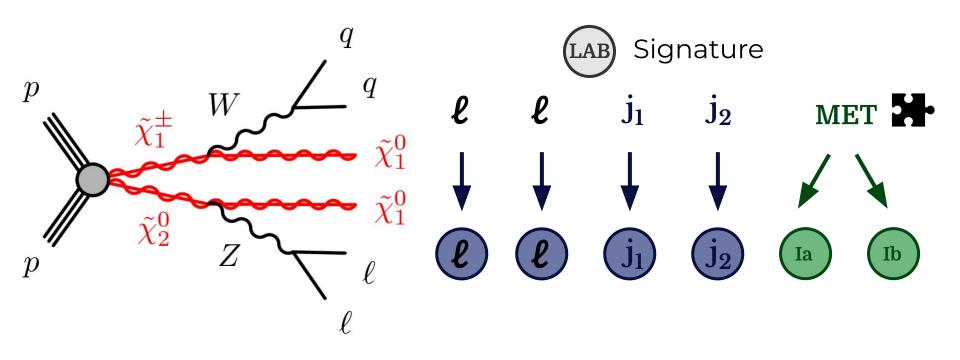
$$R_{P_T} = rac{p_{T, PP}^{LAB}}{p_{T, PP}^{LAB} + H_{T 4, 1}^{PP}}$$

Smaller = better reconstruction



An **event** defined in the LAB frame

Arrows are object's four vectors in the harme

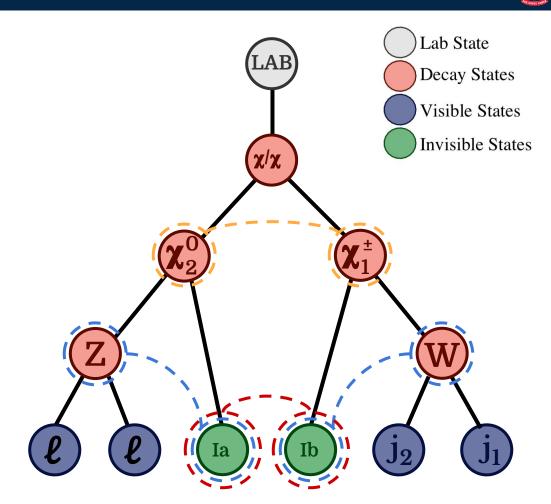

We do not want **jets** to be in the direction of **MET**

(Not RJ, but we use it)

How do we split the **MET**?

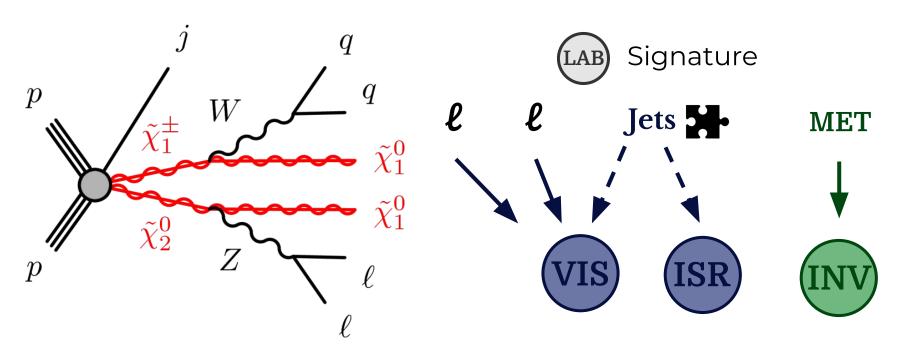
• We apply "Jigsaw Rules"

We set the pseudrapidity of invisibles (la+lb) to the visibles

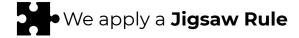

 $(\ell\ell+\ell)$ for each branch

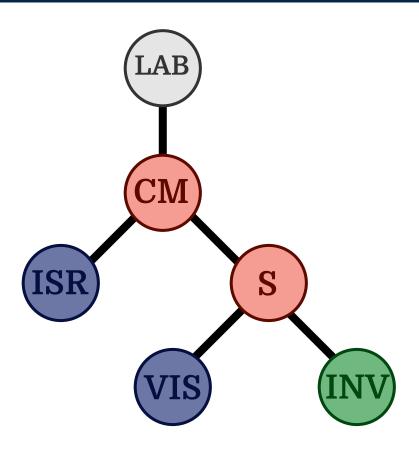
Minimise the mass of (la+lb)

Require Chargino-1 and


Neutralino-2 to be the same

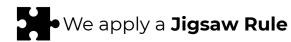
mass

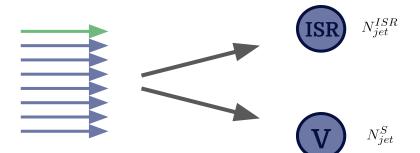


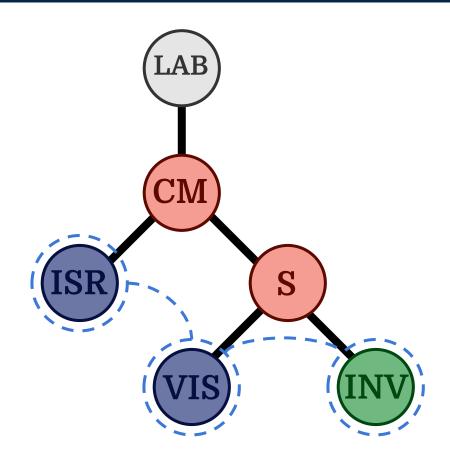


Transverse Components Only

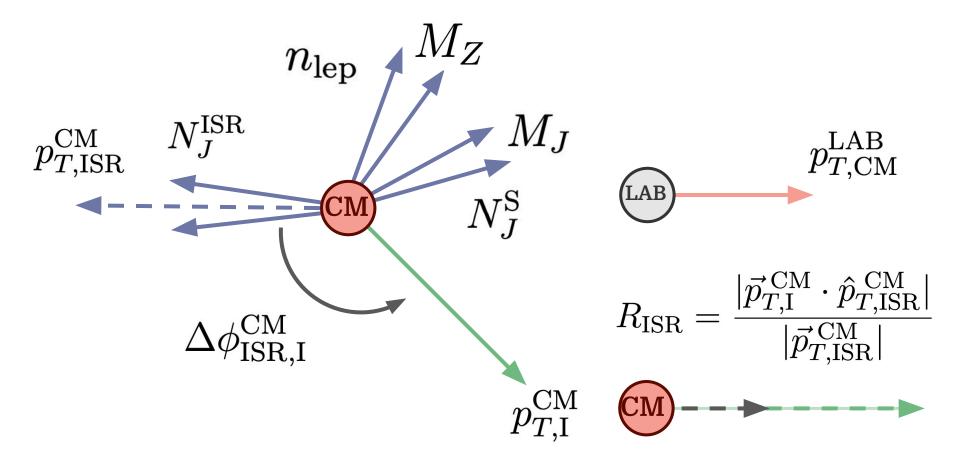
How do we determine ISR?







How do we determine ISR?



We add take all combinations of jets into **ISR** and **VIS** and assign based on the minimum mass combination

Muon definitions

- We use eta 2.4 not 2.7 as recommended (frozen object)
- Moved to FCTight from GradientLoose (not supported)

Electron definitions

We moved to FCTight from GradientLoose (not supported)

Jet definitions

We use eta 2.4 not 2.7 as recommended (frozen object)

Table 4.2: Summary of the muon selection criteria. The signal selection requirements are applied in addition to the baseline selection criteria, and take place after overlap removal.

Category	Acceptance	PID Quality	Isolation	Impact Parameter
Baseline Muon	$p_T > 10 \text{ GeV}$ $ \eta^{\text{clust}} < 2.40$	Medium	۲	$ z_0 \sin \theta < 0.5 \text{ mm}$
Signal Muon	$p_T > 10 \text{ GeV}$ $ \eta^{ ext{clust}} < 2.40$	Medium	FixedCutTight	$\begin{aligned} z_0 \sin \theta &< 0.5 \text{ mm} \\ d_0/\sigma_{d_0} &< 3 \end{aligned}$

Table 4.3: Summary of the electron selection criteria. The signal selection requirements are applied in addition to the baseline selection criteria, and take place after overlap removal.

Category	Acceptance	PID Quality	Isolation	Impact Parameter
Baseline Electron	$p_T > 10 \text{ GeV}$	LooseAndBLayerLLH	-	$ z_0 \sin \theta < 0.5 \text{ mm}$
	$ \eta^{ m clust} < 2.47$		-	
Signal Electron	$p_T > 10 \text{ GeV}$	LLHMedium	FixedCutTight	$ z_0 \sin \theta < 0.5 \text{ mm}$
	$ \eta^{ m clust} < 2.47$			$ d_0/\sigma_{d_0} < 5$

Table 4.4: Summary of the jet and b-jet selection criteria. The signal selection requirements are applied in addition to basline requirements. Signal b-jet selection is in addition to the signal requirements. These requirements take place after overlap removal. * JVT is only applied for jets with $p_T < 60 \text{ GeV}$ and $|\eta| < 2.4$.

Category	Collection	Acceptance	JVT	b-tagger Algorithm	Efficiency
Baseline jet	AntiKt4EMTopo	$p_T > 20 \text{ GeV}, \eta < 4.5$	-	-	-
Signal jet	AntiKt4EMTopo	$p_T > 20 \text{ GeV}, \eta < 2.4$	$ JVT > 0.59^*$	-	-
Signal b -jet	AntiKt4EMTopo	$p_T > 20 \text{ GeV}, \eta < 2.4$	$ \mathrm{JVT} > 0.59^*$	MV2c10	77%

Table 4.7: The two lepton preselection regions defined to validate our MC modelling of the run-II ATLAS dataset.

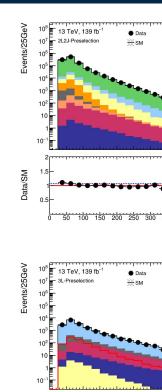
Region	Selection	N_{Jets}	$p_T^{\ell_1}$ [GeV]	$p_T^{\ell_2}$ [GeV]	$p_T^{j_1}$ [GeV]	$p_T^{j_2}$ [GeV]	$m_{\ell\ell}/M_Z$ [GeV]	$m_{jj}/M_J~[{ m GeV}]$
RJ2ℓA	$l^{\pm}l^{\mp}$	=2	> 25	> 25	> 30	> 30	$\in [80, 100]$	$\in [60, 100]$
RJ2ℓB	$l^{\pm}l^{\mp}$	>=2	> 25	> 25	> 30	> 30	$\in [80, 100]$	$\in [60, 100]$

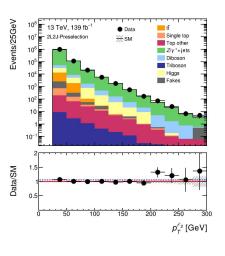
Table 4.8: The three lepton preselection regions defined to validate our MC modelling of the run-II ATLAS dataset.

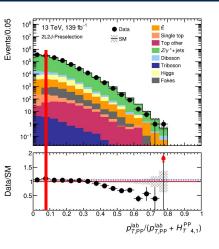
Region	Selection	N_{Jets}	$p_T^{\ell_1}$ [GeV]	$p_T^{\ell_2}$ [GeV]	$p_T^{\ell_3}$ [GeV]	$m_{\ell\ell}$ [GeV]	$m_T^W \; [{ m GeV}]$
RJ3ℓA	$\ell^{\pm}\ell^{\mp}\ell$	>= 0	> 25	> 25	> 20	$\in [75, 105]$	> 50
RJ3ℓB	$\ell^{\pm}\ell^{\mp}\ell$	> 0	> 25	> 25	> 20	$\in [75, 105]$	> 50

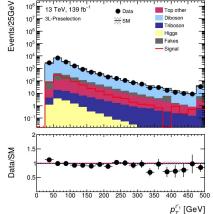
Top other

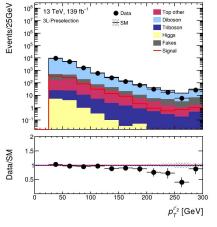
Z/y *+ jets

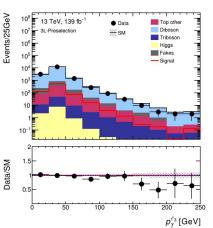

Diboson

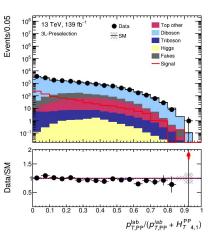

Higgs


 $p_{\scriptscriptstyle T}^{\ell_1}$ [GeV]









Preselection modelling looks good

Triggers and Monte Carlo

We use standard dilepton triggers

- ee triggers
- > e mu triggers
- mu mu triggers

Summary of Monte Carlo Generators

Summary of triggers

ee trigger	$\mu\mu$ trigger	$e\mu$ trigger
2e12_lhloose_L12EM10VH	2mu10	e17_lhloose_mu14
2e17_lhvloose_nod0	mu22_mu8noL1 or 2mu14	e17_lhloose_nod0_mu14 or e7_lhmedium_nod0_mu24
2e17_lhvloose_nod0 or 2e24_lhvloose_nod0	mu22_mu8noL1 or 2mu14	e17_lhloose_nod0_mu14 or e7_lhmedium_nod0_mu24
2e17_lhvloose_nod0 or 2e24_lhvloose_nod0	mu22_mu8noL1 or 2mu14	e17_lhloose_nod0_mu14 or e7_lhmedium_no0_mu24
	2e12_lhloose_L12EM10VH 2e17_lhvloose_nod0 2e17_lhvloose_nod0 or 2e24_lhvloose_nod0 2e17_lhvloose_nod0 or	2e12_lhloose_L12EM10VH 2mu10 2e17_lhvloose_nod0 mu22_mu8noL1 or 2mu14 2e17_lhvloose_nod0 or 2e24_lhvloose_nod0 mu22_mu8noL1 or 2mu14 2e17_lhvloose_nod0 or mu22_mu8noL1 or 2mu14

Table 4.1: The SUSY signals and the Standard Model background MC samples used in this search. The generators, the order in $\alpha_{\rm s}$ of cross-section calculations used for yield normalization, PDF sets, parton showers and parameter tunes used for the underlying event are shown.

Physics process	Generator	Cross-section normalization	PDF set	Parton shower	Tune
SUSY processes	Madgraph v2.2.3	NLO+NLL	NNPDF2.3LO	Рутніа 8.186	A14
$Z/\gamma^*(\to \ell\bar{\ell})$ + jets	SHERPA 2.2.1	NNLO	NNPDF3.0NNLO	SHERPA	SHERPA default
γ + jets	SHERPA 2.1.1	LO	CT10	SHERPA	SHERPA default
$H(\to \tau\tau), \ H(\to WW)$	Powheg-Box v2	NLO	CTEQ6L1	Рутніа 8.186	A14
HW, HZ	MG5_aMC@NLO 2.2.2	NLO	NNPDF2.3LO	Рутніа 8.186	A14
$tar{t} + H$	MG5_aMC@NLO 2.2.2	NLO	CTEQ6L1	Herwig 2.7.1	A14
$t\bar{t}$	Powheg-Box v2	NNLO+NNLL	CT10	Рутніа 6.428	Perugia2012
Single top (Wt -channel)	Powheg-Box v2	NNLO+NNLL	CT10	Рутніа 6.428	Perugia2012
Single top (s-channel)	Powheg-Box v2	NLO	CT10	Рутніа 6.428	Perugia2012
Single top (t-channel)	Powheg-Box v1	NLO	CT10f4	Рутніа 6.428	Perugia2012
Single top (Zt -channel)	MG5_aMC@NLO 2.2.1	LO	CTEQ6L1	Рутніа 6.428	Perugia2012
$t\bar{t} + W/WW$	MG5_aMC@NLO 2.2.2	NLO	NNPDF2.3LO	Рутніа 8.186	A14
$t\bar{t} + Z$	MG5_aMC@NLO 2.2.3	NLO	NNPDF2.3LO	Рутніа 8.186	A14
WW, WZ, ZZ	SHERPA 2.2.1	NLO	NNPDF30NNLO	SHERPA	SHERPA defaul
$V\gamma$	SHERPA 2.1.1	LO	CT10	Sherpa	SHERPA defaul
Triboson	SHERPA 2.2.1	NLO	NNPDF30NNLO	SHERPA	SHERPA defaul

R20 Region Breakdowns

Signal region	$SR2\ell_High$	SR2ℓ_Int	SR2ℓ_Low	SR2ℓ_ISR
Total observed events	0	1	19	11
Total background events	1.9 ± 0.8	2.4 ± 0.9	8.4 ± 5.8	2.7+2.8
Other	0.02 ± 0.01	$0.05^{+0.12}_{-0.05}$	$0.02^{+1.07}_{-0.02}$	$0.06^{+0.33}_{-0.06} \\ 0.28^{+0.34}_{-0.28}$
Fit output, $Wt + t\bar{t}$	0.00 ± 0.00	0.00 ± 0.00	0.57 ± 0.20	$0.28^{+0.34}_{-0.28}$
Fit output, VV	1.8 ± 0.7	2.4 ± 0.8	1.5 ± 0.9	2.3 ± 1.1
Z+jets	$0.07^{+0.78}_{-0.07}$	$0.00^{+0.74}_{-0.00}$	6.3 ± 5.8	$0.10^{+2.58}_{-0.10}$
Fit input, $Wt + t\bar{t}$	0.00	0.00	0.63	0.28
Fit input, VV	1.9	2.6	1.6	2.4

Signal region	SR3ℓ_High	SR3ℓ_Int	SR3ℓ_Low	$SR3\ell_ISR$ 12 3.9 ± 1.0	
Total observed events	2	1	20		
Total background events	1.1 ± 0.5	2.3 ± 0.5	10 ± 2		
Other Triboson	$0.03^{+0.07}_{-0.03}$ 0.19 ± 0.07	0.04 ± 0.02 0.32 ± 0.06	$0.02^{+0.34}_{-0.02} \ 0.25 \pm 0.03$	$0.06^{+0.19}_{-0.06}$ 0.08 ± 0.04	
Fit output, VV	0.83 ± 0.39	1.9 ± 0.5	10 ± 2	3.8 ± 1.0	
Fit input, VV	0.76	1.8	9.2	3.4	

Region Definitions

Table 2: Preselection criteria for the three standard-decay-tree 2ℓ SRs and the associated CRs and VRs. The variables are defined in the text.

Region	$n_{ m leptons}$	$n_{\rm jets}$	$n_{b\text{-tag}}$	$p_{\mathrm{T}}^{\ell_1,\ell_2}$ [GeV]	$p_{\mathrm{T}}^{j_1,j_2}$ [GeV]	$m_{\ell\ell}$ [GeV]	m_{jj} [GeV]	m_{T}^{W} [GeV]
CR2ℓ-VV	∈ [3, 4]	≥ 2	=0	> 25	> 30	∈ (80, 100)	> 20	∈ (70, 100)
								if $n_{\text{leptons}} = 3$
CR2ℓ-Top	= 2	≥ 2	=1	> 25	> 30	\in (80, 100)	∈ (40, 250)	_
VR2ℓ-VV	= 2	≥ 2	=0	> 25	> 30	∈ (80, 100)	∈ (40, 70)	_
							or $\in (90, 500)$	_
VR2ℓ-Top	= 2	≥ 2	=1	> 25	> 30	\in (20, 80)	\in (40, 250)	_
						or > 100		_
SR2ℓ_High	= 2	≥ 2	= 0	> 25	> 30	∈ (80, 100)	€ (60, 100)	_
SR2ℓ_Int	= 2	≥ 2	= 0	> 25	> 30	\in (80, 100)	\in (60, 100)	_
SR2ℓ_Low	= 2	= 2	= 0	> 25	> 30	\in (80, 100)	$\in (70, 90)$	=

The ISR regions are further defined with a series of requirements based on the variables reconstructed from the compressed decay tree. These requirements are listed in Table 5. The ISR SR is defined by requiring a highly energetic ISR jet system which recoils against the entire signal system in the CM frame. In VR2 ℓ _ISR-VV the m_Z requirement is inverted in order to be orthogonal to the CR2 ℓ _ISR-VV. The top CRs (CR2\ell ISR-Top) and VR (VR2\ell ISR-Top) are defined with a b-tag jet requirement and have broader m_Z and m_I windows. The broader mass windows help to increase the numbers of data

Table 3: Selection criteria for the three standard-decay-tree 2ℓ SRs and the associated CRs and VRs. The variables are defined in the text

Region	$H_{4,1}^{\mathrm{PP}}$ [GeV]	$H_{1,1}^{\mathrm{PP}}$ [GeV]	$\frac{p_{\mathrm{T\ PP}}^{\mathrm{lab}}}{p_{\mathrm{T\ PP}}^{\mathrm{lab}} + H_{\mathrm{T\ 4,1}}^{\mathrm{PP}}}$	$\frac{\min(H_{1,1}^{\mathrm{P_a}},\!H_{1,1}^{\mathrm{P_b}})}{\min(H_{2,1}^{\mathrm{P_a}},\!H_{2,1}^{\mathrm{P_b}})}$	$\frac{H_{1,1}^{\rm PP}}{H_{4,1}^{\rm PP}}$	$\Delta\phi_{ m V}^{ m P}$	$\min\Delta\phi(j_1/j_2, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$
CR2ℓ-VV	> 200	0 - 2	< 0.05	> 0.2	t - 9	∈ (0.3, 2.8)	
CR2ℓ-Top	> 400	-	< 0.05	> 0.5	_	$\in (0.3, 2.8)$	-
VR2ℓ-VV	> 400	> 250	< 0.05	€ (0.4, 0.8)	-	∈ (0.3, 2.8)	
VR2ℓ-Top	> 400	_	< 0.05	> 0.5	_	$\in (0.3, 2.8)$	<u></u>
							-
SR2ℓ_High	> 800	-	< 0.05	> 0.8	-	$\in (0.3, 2.8)$	=
SR2ℓ_Int	> 600	-	< 0.05	> 0.8	-	$\in (0.6, 2.6)$	_
SR2ℓ_Low	> 400	-	< 0.05	_	$\in (0.35, 0.60)$	_	> 2.4

Table 4: Preselection criteria for the compressed-decay-tree 2ℓ SR and the associated CRs and VRs. The variables are defined in the text.

Region	$n_{\rm leptons}$	$N_{\rm jet}^{\rm ISR}$	$N_{ m jet}^{ m S}$	$n_{ m jets}$	$n_{b ext{-tag}}$	$p_{\mathrm{T}}^{\ell_1,\ell_2}$ [GeV]	$p_{\mathrm{T}}^{j_1,j_2}$ [GeV]
CR2ℓ_ISR-VV	∈ [3, 4]	≥ 1	≥ 2	> 2	= 0	> 25	> 30
CR2ℓ_ISR-Top	= 2	≥ 1	= 2	$\in [3, 4]$	= 1	> 25	> 30
VR2ℓ_ISR-VV	∈ [3, 4]	≥ 1	≥ 2	≥ 3	= 0	> 25	> 20
VR2ℓ_ISR-Top	= 2	≥ 1	= 2	$\in [3, 4]$	= 1	> 25	> 30
VR2ℓ_ISR-Zjets	= 2	≥ 1	≥ 1	$\in [3, 5]$	= 0	> 25	> 30
SR2ℓ_ISR	= 2	≥ 1	= 2	∈ [3, 4]	= 0	> 25	> 30

Table 5: Selection criteria for the compressed-decay-tree 2ℓ SR and the associated CRs and VRs. The variables are defined in the text.

Region	m_Z [GeV]	m_J [GeV]	$\Delta\phi_{\mathrm{ISR,I}}^{\mathrm{CM}}$	$R_{\rm ISR}$	$p_{\mathrm{T~ISR}}^{\mathrm{CM}}$ [GeV]	$p_{\mathrm{T~I}}^{\mathrm{CM}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{CM}}$ [GeV]
CR2ℓ_ISR-VV	∈ (80, 100)	> 20	> 2.0	∈ (0.0, 0.5)	> 50	> 50	< 30
CR2ℓ_ISR-Top	\in (50, 200)	\in (50, 200)	> 2.8	$\in (0.4, 0.75)$	> 180	> 100	< 20
VR2ℓ_ISR-VV	€ (20, 80)	> 20	> 2.0	€ (0.0, 1.0)	> 70	> 70	< 30
	or > 100						
VR2ℓ_ISR-Top	\in (50, 200)	\in (50, 200)	> 2.8	$\in (0.4, 0.75)$	> 180	> 100	> 20
VR2ℓ_ISR-Zjets	\in (80, 100)	< 50 or > 110	_	_	> 180	> 100	< 20
SR2ℓ_ISR	∈ (80, 100)	∈ (50, 110)	> 2.8	∈ (0.4, 0.75)	> 180	> 100	< 20

Table 6: Preselection criteria for the 3ℓ CR, VR and SR with the standard decay tree. The variables are defined in the text.

Region	$n_{ m leptons}$	$n_{\rm jets}$	$n_{b ext{-tag}}$	$p_{\mathrm{T}}^{\ell_1}$ [GeV]	$p_{\mathrm{T}}^{\ell_2}$ [GeV]	$p_{\mathrm{T}}^{\ell_3}$ [GeV]
CR3ℓ-VV	= 3	< 3	= 0	> 60	> 40	> 30
VR3ℓ-VV	= 3	< 3	= 0	> 60	> 40	> 30
SR3ℓ_High	= 3	< 3	= 0	> 60	> 60	> 40
SR3ℓ_Int	= 3	< 3	= 0	> 60	> 50	> 30
SR3ℓ_Low	= 3	= 0	= 0	> 60	> 40	> 30

Table 7: Selection criteria for the 3ℓ CR, VR and SR with the standard decay tree. The variables are defined in the text.

Region	$m_{\ell\ell}$ [GeV]	m_{T}^{W} [GeV]	$H_{3,1}^{\mathrm{PP}}$ [GeV]	$\frac{p_{\mathrm{T\ PP}}^{\mathrm{lab}}}{p_{\mathrm{T\ PP}}^{\mathrm{lab}} + H_{\mathrm{T\ 3,1}}^{\mathrm{PP}}}$	$\frac{H_{\rm T-3,1}^{\rm PP}}{H_{3,1}^{\rm PP}}$	$\frac{H_{1,1}^{\rm P_b}}{H_{2,1}^{\rm P_b}}$
CR3ℓ-VV	∈ (75, 105)	∈ (0, 70)	> 250	< 0.2	> 0.75	_
VR3ℓ-VV	∈ (75, 105)	\in (70, 100)	> 250	< 0.2	> 0.75	_
SR3ℓ_High	∈ (75, 105)	> 150	> 550	< 0.2	> 0.75	> 0.8
SR3ℓ_Int	\in (75, 105)	> 130	> 450	< 0.15	> 0.8	> 0.75
$SR3\ell_Low$	∈ (75, 105)	> 100	> 250	< 0.05	> 0.9	_

Table 8: Preselection criteria for the 3ℓ CR, VR and SR with the compressed decay tree. The variables are defined in the text.

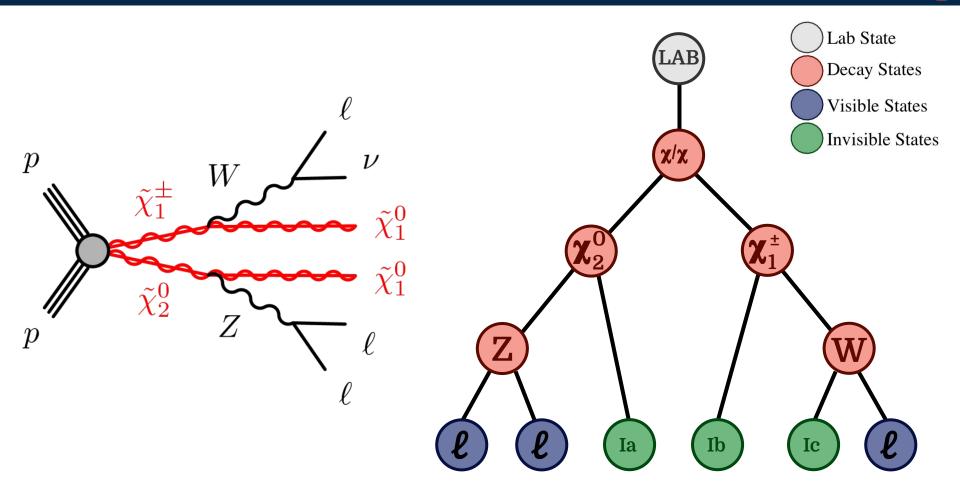
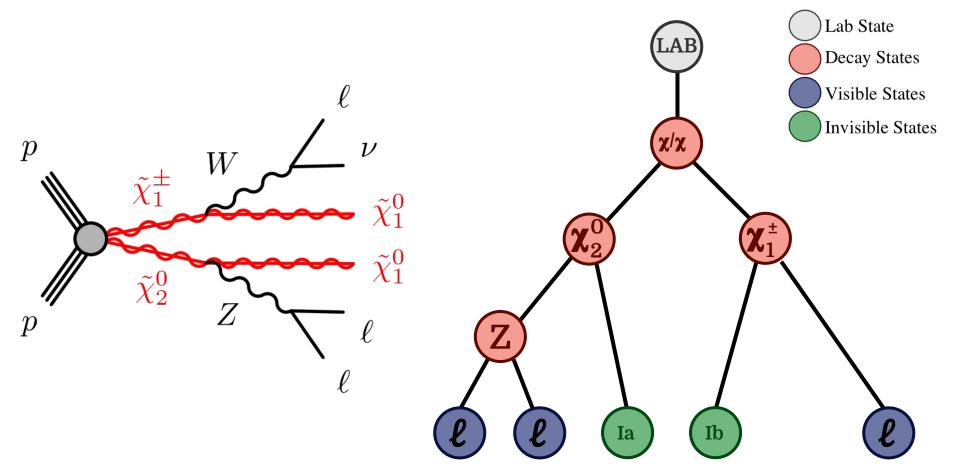

Region	$n_{\rm leptons}$	$n_{ m jets}$	$n_{b ext{-tag}}$	$p_{\mathrm{T}}^{\ell_1}$ [GeV]	$p_{\mathrm{T}}^{\ell_2}$ [GeV]	$p_{\mathrm{T}}^{\ell_3}$ [GeV]
CR3ℓ_ISR-VV	= 3	≥ 1	= 0	> 25	> 25	> 20
VR3ℓ_ISR-VV	= 3	≥ 1	= 0	> 25	> 25	> 20
SR3ℓ_ISR	= 3	∈ [1, 3]	= 0	> 25	> 25	> 20

Table 9: Selection criteria for the 3ℓ CR, VR and SR with the compressed decay tree. The variables are defined in the text.


Region	$m_{\ell\ell}$ [GeV]	m_{T}^{W} [GeV]	$\Delta\phi_{\mathrm{ISR,I}}^{\mathrm{CM}}$	$R_{\rm ISR}$	$p_{\mathrm{T~ISR}}^{\mathrm{CM}}$ [GeV]	$p_{\mathrm{T~I}}^{\mathrm{CM}}$ [GeV]	$p_{\mathrm{T}}^{\mathrm{CM}}$ [GeV]
CR3ℓ_ISR-VV	∈ (75, 105)	< 100	> 2.0	∈ (0.55, 1.0)	> 80	> 60	< 25
VR3ℓ_ISR-VV	\in (75, 105)	> 60	> 2.0	$\in (0.55, 1.0)$	> 80	> 60	> 25
SR3ℓ_ISR	∈ (75, 105)	> 100	> 2.0	∈ (0.55, 1.0)	> 100	> 80	< 25

3L RJ treatment

