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Introduction

e Wide variety of physics analyses performed on data recorded by the
ATLAS Detector at the LHC

@ Many BSM searches (eg supersymmetric models) have dark matter
candidates

@ Accuracy of object reconstruction vital to all physics analyses
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Machine Learning for Event Reconstruction

@ Calorimeter calibration relies on understanding single particle response -
for pp collisions, this is mostly pions

@ Current methods for identifying and calibrating the energy of pions do
not make use of distribution of energy within the calorimeter

@ Lots of information in shower shape and depth - a neural network can
use this!
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Neural Network Architectures

@ Investigated three different neural network architectures

@ Two goals: classification, and energy calibration
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Classifier Goals

Ultimate goal to apply the correct energy scale to each topo-cluster

Need to classify pion events as hadronic (charged) or electromagnetic
(neutral)

Currently done using 22EM

clus
ML techniques can use shower shape information to improve efficiency
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Classifier Results

o 70 rejection vs 7t efficiency
@ Vastly improved performance with all architectures!
e eg at 90% 7t efficiency, DNN gives 5 times better 70 rejection while

CNN and DenseNet give around 8 times improved rejection over &2EM
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Classifier Results

.é Cluster Energy < 1 GeV z3 Cluster Energy < 1 GeV
8 400 — = 1 <Cluster Energy / GeV < 10 By — — 1< Cluster Energy / GeV < 10
E —— 10 < Cluster Energy / GeV < 50 2 102F —— 10 < Cluster Energy / GeV < 50 o
2 — - 50 < Cluster Energy / GeV' < 500 5 ~ 50 < Cluster Energy / GeV < 500 I
103 8 i
4 ———
% _’/’/__, .\
10?] 20k rem—————— - r/ i
I A \
S — [}
10! \ 2 \
\‘ [:4 )
ATLAS Simulation Preliminar) () ATLAS Simulation Preliminar)
100t CNN Classification of z* vs = 0% GNN Classification of 7* vs 7 .
060 065 070 075 080 085 090 095 1.00 060 065 070 075 080 08 090 095 1.00
= Efficiency n* Efficiency

CNN efficiency CNN / ZEM

clus

@ Increasingly better performance at higher energies

@ Not explicitly trained on energy - variation in shower shape with energy
enough to give good separation in every energy range
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Regression Goals

o After identifying a pion as hadronic/EM, need to convert the signal
into an energy measurement

o LCW calibration splits this over three steps: hadronic calibration, signal
loss correction and dead material correction

@ ML techniques may improve performance by better utilising cell

information
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Regression Results

@ x-axis: true energy, y-axis: median response

@ All networks showed greatly improved performance at low energy

@ CNN diverges slightly at high energy
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Regression Results

@ x-axis: true energy, y-axis: half-width response IQR / median
(resolution)

@ Improved resolution at low energy

@ Comparable resolution at high energy
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Regression Results

@ Mixed sample of 7 and 7° as approximation of real jets

@ Again, much improved performance across all energy bins
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Conclusion

@ Neural networks to classify pions as charged or neutral - great
performance improvement over traditional methods

@ Neural networks to perform energy calibration - significant improvement
in both energy scale and resolution for classified pion events

@ Combining the two types of networks leads to some very promising
results

@ All of this possible by better leveraging the information contained in the
shapes of showers as they pass through the various calorimeter layers

See the ATLAS public note for more details: https://cds.cern.ch/record/272463271n=en
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Dataset Details

@ Single pion samples in barrel region (|| < 0.7)

@ Generate a 2D ‘image’ for each topo-cluster in each calorimeter layer

(EMBL1,2,3 and Tilel,2,3)

@ x- and y-axes are the ¢ and n coordinates relative to the cluster

centroid
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Average Pion Images
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e 7T have slightly wider distributions, but difficult to see from just
looking at the ‘average’ images
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Average Difference Images
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@ Wider showers are associated with charged pions, smaller showers with
neutral pions as expected

@ Let's see how well the neural networks can leverage this information!
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Classifier Correlation

@ Pearson correlation between average 7° image and CNN classifier score
@ Width and depth of shower are important to the CNN, as expected
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CNN Visualisation

@ Visualisations of ‘features’ that the CNN has learned to look for

o Difficult to interpret, but generally captures the shape of showers in

each layer

@ Axes are in arbitrary units (related to cell index)
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