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Motivation

e Models with new scalars expand the scalar potential parameter space.

e This may lead to a first-order electroweak phase transition, as required
for electroweak baryogenesis.
e If these new scalars are also stable, they will contribute to the dark

matter density.

e Is there a relatively simple scalar extension that could explain both the
DM density and BAU?



Minimal Scalar Extensions - Singlets

Adding a real singlet scalar S is the simplest possible scalar extension.

e Relic density determined by the Higgs coupling, as it is the only coupling
to the SM particles.

S SM

P = o) x N

S SM

e This coupling also determines the direct detection cross section.
H = 0g X g

e Severe DM constraints are inconsistent with requirements for a SFO
EWPT.



Minimal Scalar Extensions - Triplets

Adding a real SU(2) triplet scalar 3 is the next simplest extension.
e Annihilation rate dominated by gauge couplings.

EO\ w
K = e
0 ) w=
e This large annihilation rate requires the new scalars to have a very large
mass (my, = 2 TeV).
e Similar result for inert doublet DM (my, Z 500 GeV).

e When the coupling to the SM Higgs is non-zero, as required for
interesting EWPT, these masses need to be even larger.

e Minimal scalar multiplet DM is inconsistent with parameter space
required for an interesting EWPT.



Next-to-minimal Scalar Extensions

Minimal scalar extensions cannot provide a DM candidate while also
contributing significantly to the EWPT. Need additional particles.
e Multiple gauge singlet scalars.
e Multiplet SU(2) multiplet scalars, e.g., multiple inert Higgs doublets.
e 2HDM +singlet
e Triplet+Singlet Model



Motivation - EWBG

e We examine a model where the SM is extended by a real scalar singlet S
and a real scalar triplet ¥ ~ (1,3,0).

e Motivated by a similar model, with two Higgs doublets, that was
examined in the context of EWBG (arXiv:1508.05404).
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Z, Symmetry

We must impose a Z, symmetry in order to ensure one of the new particles is
stable.

e We will charge both the singlet and triplet under a single Z, symmetry.

e Similar models have been examined in arXiv:1311.1077 and
arXiv:2009.01262

e The Z, symmetry ensures that there is a stable particle.
e This symmetry also prevents the new scalars from mixing with the SM
Higgs.

e However, the singlet and triplet can mix with each other.


https://arxiv.org/abs/1311.1077
https://arxiv.org/abs/2009.01262

Scalar Mixing

e The Z, symmetry permits a \yyngH X HS term.
o After EWSB this will give rise to mixing between %0 and S

e We rotate to the mass basis

»0’ [ cost sin @ 0
S )]\ —sinf cosfh S )
e The heavier scalar will decay into the lighter one and an (off-shell) SM
Higgs.

e The lightest scalar will be stable and contribute to the DM density.

o If my, < mg, encounter same issue as in minimal triplet scalar DM,
annihilation rate is large = need large masses.



Equilibrium processes in the Singlet-Triplet Model

Consider mg < my,, S is the DM. There are three significant processes
that could keep the S’ in thermal equilibrium.
(a) Equilibrium through weak gauge boson couplings.
s W
{: —  (04v) x ¢g*sin® 6
50! w-
(b) Equilibrium through coupling to X.
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(¢) Equilibrium through coupling to SM Higgs.
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Dark Matter - Constraints

e We use micrOMEGAS to evaluate relic density and DD cross sections.

Apply constraints from XENONIT.

Apply Fermi-LAT limits arising from loop induced S’S" — vy
annihilation.

Also include constraints from oblique parameters.



Dark Matter -

e Perform a random scan of the parameter space.
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From the scatter-plot, we conclude that either:

(a) [sin@| ~ 0.1 and Am > 0.
(b) Asg > 0.1 and 0 < Am < 30 GeV.
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Collider Phenomenology

e No dedicated collider searches exist for this model.

e However, this model is somewhat analogous to SUSY models with a
stable neutralino,

o St 2V =, 90
e This model can be constrained using SUSY searches.

e Search strategy depends significantly on “neutralino” mass difference
Am = mg — My

11/16



e The scalars are mainly pair produced via charged and neutral current
Drell-Yan processes.

q >+t q N+

q %0’ q %
e The production cross section is about 10x smaller than for =, x°

Leading order production cross sections
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“hannels

e The X* will decay almost exclusively into S ),
e Directly analogous to Xf — X?V[/i(*).

e The ¥° will generally decay into S”h™).

e For large Am, there exist analogous neutralino searches using Xg — X(l)h
e However, for low Am, these searches use X(Q) — X&’Z ),

o If myo > my., the 0 can also decay into S F
e No direct chargino analogue.

Y% branching ratios
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ollider Searc
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Image credit: ATLAS Collaboration, arXiv:1812.09432|

e The large Am decay processes have directly analogue SUSY searches.

e Constraints well approximated by directly taking the 95% CL on the
chargino production cross sections.

e Doing so, we find that current SUSY searches do not constrain our model.
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Charginos and neutralinos are notoriously difficult to search for when

they only have a small mass difference.

Existing Searches are not directly applicable due to presence of Z* — (/¢

decays.

e However, perhaps h* — 77 — (lvvvv decays can yield signal events?

Expect that maybe just about constrain up to mg ~ 70 GeV.



SIIIIIIII‘(LI'Y

A Singlet-+Triplet extension is capable of explaining the DM density.

Scalars can be light and have sizeable couplings to SM Higgs —
potential for novel EWPT.
Currently relatively unconstrained at colliders.

Similar to chargino-neutralino searches, with a factor of ~ 10x less data.

Future work

How does DM and Collider phenomenology change in
Singlet-+Triplet+2HDM?

This model can generate a baryon asymmetry (arXiv:1508.05404).

Can this model simultaneously yield the correct DM density and baryon
asymmetry?
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Appendix




Singlet+Triplet Model — Scalar Potential
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- Benchmark R

(a) Equilibrium through weak gauge boson couplings.
(b) Equilibrium through coupling to X.

Dark Matter Relic Density
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>t Model — D

Y2 decays with my= = 150 GeV and Apypg = 0.05

/ . . / . .
o ¥ branching ratios ¥ partial widths
< E 10710
208
3 —10-11
@ 0.6 = 10
-?04 =
5 ~
c
302
@
0.0
0 5
(a)
101)
—_ —1
=10
.
5 102
107

5 10 15 20
(c) Am (GeV)



m., and my, spectra for
myy = 100 GeV and mg = 60 GeV
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