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Motivation

• Models with new scalars expand the scalar potential parameter space.

• This may lead to a first-order electroweak phase transition, as required

for electroweak baryogenesis.

• If these new scalars are also stable, they will contribute to the dark

matter density.

• Is there a relatively simple scalar extension that could explain both the

DM density and BAU?
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Minimal Scalar Extensions - Singlets

Adding a real singlet scalar 𝑆 is the simplest possible scalar extension.

• Relic density determined by the Higgs coupling, as it is the only coupling

to the SM particles.

S
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SM

SM

H ⟹ ⟨𝜎𝐴𝑣⟩ ∝ 𝜆2
𝐻𝑆

• This coupling also determines the direct detection cross section.

N N

SS

H ⟹ 𝜎SI ∝ 𝜆2
𝐻𝑆

• Severe DM constraints are inconsistent with requirements for a SFO

EWPT.
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Minimal Scalar Extensions - Triplets

Adding a real SU(2) triplet scalar Σ is the next simplest extension.

• Annihilation rate dominated by gauge couplings.

Σ0

Σ0

W+

W−

⟹ ⟨𝜎𝐴𝑣⟩ ∝ 𝑔4

• This large annihilation rate requires the new scalars to have a very large

mass (𝑚Σ ≳ 2 TeV).

• Similar result for inert doublet DM (𝑚𝐻2
≳ 500 GeV).

• When the coupling to the SM Higgs is non-zero, as required for

interesting EWPT, these masses need to be even larger.

• Minimal scalar multiplet DM is inconsistent with parameter space

required for an interesting EWPT.
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Next-to-minimal Scalar Extensions

Minimal scalar extensions cannot provide a DM candidate while also

contributing significantly to the EWPT. Need additional particles.

• Multiple gauge singlet scalars.

• Multiplet SU(2) multiplet scalars, e.g., multiple inert Higgs doublets.

• 2HDM+singlet

• Triplet+Singlet Model
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Motivation - EWBG

• We examine a model where the SM is extended by a real scalar singlet 𝑆
and a real scalar triplet Σ ∼ (1, 3, 0).

• Motivated by a similar model, with two Higgs doublets, that was

examined in the context of EWBG (arXiv:1508.05404).
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ℤ2 Symmetry

We must impose a ℤ2 symmetry in order to ensure one of the new particles is

stable.

• We will charge both the singlet and triplet under a single ℤ2 symmetry.

• Similar models have been examined in arXiv:1311.1077 and

arXiv:2009.01262

• The ℤ2 symmetry ensures that there is a stable particle.

• This symmetry also prevents the new scalars from mixing with the SM

Higgs.

• However, the singlet and triplet can mix with each other.

6/16

https://arxiv.org/abs/1311.1077
https://arxiv.org/abs/2009.01262


Scalar Mixing

• The ℤ2 symmetry permits a 𝜆𝐻Σ𝑆𝐻†Σ𝐻𝑆 term.

• After EWSB this will give rise to mixing between Σ0 and S

• We rotate to the mass basis

(Σ0′

𝑆′ ) = ( cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

) (Σ0

𝑆
) .

• The heavier scalar will decay into the lighter one and an (off-shell) SM

Higgs.

• The lightest scalar will be stable and contribute to the DM density.

• If 𝑚Σ0′ < 𝑚𝑆′ , encounter same issue as in minimal triplet scalar DM,

annihilation rate is large ⟹ need large masses.
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Equilibrium processes in the Singlet-Triplet Model

Consider 𝑚𝑆′ < 𝑚Σ0′ , 𝑆′ is the DM. There are three significant processes

that could keep the 𝑆′ in thermal equilibrium.

(a) Equilibrium through weak gauge boson couplings.

S′

Σ0′

W+

W−

⟹ ⟨𝜎𝐴𝑣⟩ ∝ 𝑔4 sin2 𝜃

(b) Equilibrium through coupling to Σ.

S′

S′

Σ′

Σ′

×
Σ′

Σ′

W+

W−

⟹ 𝑛−1
𝑆′ ∝∼ 𝜆2

Σ𝑆′𝑔4

(c) Equilibrium through coupling to SM Higgs.

S′

S′

SM

SM

H ⟹ ⟨𝜎𝐴𝑣⟩ ∝ 𝜆2
𝐻𝑆′

𝜆𝐻𝑆′ = 𝜆𝐻𝑆 cos2 𝜃 − 𝜆𝐻Σ𝑆 cos 𝜃 sin 𝜃 + 𝜆𝐻Σ sin2 𝜃
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Dark Matter - Constraints

• We use micrOMEGAS to evaluate relic density and DD cross sections.

• Apply constraints from XENON1T.

• Apply Fermi-LAT limits arising from loop induced 𝑆′𝑆′ → 𝛾𝛾
annihilation.

• Also include constraints from oblique parameters.
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Dark Matter - Constraints Scatter Plot

• Perform a random scan of the parameter space.
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Dark Matter Exclusion Scatterplot

From the scatter-plot, we conclude that either:

(a) |sin 𝜃| ∼ 0.1 and Δ𝑚 > 0.

(b) 𝜆Σ𝑆 > 0.1 and 0 < Δ𝑚 < 30 GeV.
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Collider Phenomenology

• No dedicated collider searches exist for this model.

• However, this model is somewhat analogous to SUSY models with a

stable neutralino,

• Σ± ⟺ 𝜒±
1 , Σ0′ ⟺ 𝜒0

2 , 𝑆′ ⟺ 𝜒0
1

• This model can be constrained using SUSY searches.

• Search strategy depends significantly on “neutralino” mass difference

Δ𝑚 = 𝑚𝑆′ − 𝑚Σ0′ .
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Production Processes

• The scalars are mainly pair produced via charged and neutral current

Drell-Yan processes.
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q
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q

Σ−

Σ+

• The production cross section is about 10× smaller than for 𝜒±, 𝜒0
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Decay Channels

• The Σ± will decay almost exclusively into 𝑆′𝑊 ±(∗)
.

• Directly analogous to 𝜒±
1 → 𝜒0

1𝑊 ±(∗)
.

• The Σ0′
will generally decay into 𝑆′ℎ(∗).

• For large Δ𝑚, there exist analogous neutralino searches using 𝜒0
2 → 𝜒0

1ℎ
• However, for low Δ𝑚, these searches use 𝜒0

2 → 𝜒0
1𝑍(∗).

• If 𝑚Σ0′ > 𝑚Σ± , the Σ0′
can also decay into Σ±𝑊 ∓(∗)

• No direct chargino analogue.
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Collider Searches - Large Δ𝑚

[Image credit: ATLAS Collaboration, arXiv:1812.09432]

• The large Δ𝑚 decay processes have directly analogue SUSY searches.

• Constraints well approximated by directly taking the 95% CL on the

chargino production cross sections.

• Doing so, we find that current SUSY searches do not constrain our model.
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Collider Searches - Small Δ𝑚

[Image credit: ATLAS Collaboration, arXiv:1911.12606]

• Charginos and neutralinos are notoriously difficult to search for when

they only have a small mass difference.

• Existing Searches are not directly applicable due to presence of 𝑍∗ → ℓℓ
decays.

• However, perhaps ℎ∗ → 𝜏𝜏 → ℓℓ𝜈𝜈𝜈𝜈 decays can yield signal events?

• Expect that maybe just about constrain up to 𝑚𝑆′ ∼ 70 GeV.
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Summary

• A Singlet+Triplet extension is capable of explaining the DM density.

• Scalars can be light and have sizeable couplings to SM Higgs ⟹
potential for novel EWPT.

• Currently relatively unconstrained at colliders.

• Similar to chargino-neutralino searches, with a factor of ∼ 10× less data.

• Future work

• How does DM and Collider phenomenology change in

Singlet+Triplet+2HDM?

• This model can generate a baryon asymmetry (arXiv:1508.05404).

• Can this model simultaneously yield the correct DM density and baryon

asymmetry?
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Appendix



Singlet+Triplet Model – Scalar Potential
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Dark Matter - Benchmark Results

(a) Equilibrium through weak gauge boson couplings.

(b) Equilibrium through coupling to Σ.
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Singlet+Triplet Model – Decays
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Singlet+Triplet Model – 𝑚ℓℓ Spectrum
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[Image credit: ATLAS Collaboration, arXiv:1911.12606]
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