

Theory Program

Nicole Bell

ANNUAL WORKSHOP -- ARC CENTRE OF EXCELLENCE FOR DARK MATTER PARTICLE PHYSICS -- THEORY PROGRAM -- NICOLE BELL -- 26 NOV 2020 1

Theory Chief Investigators

9 Theory Chief Investigators

Nicole Bell, Celine Boehm, Matthew Dolan, Alan Duffy, Cedric Simenel, Anthony Thomas, Ray Volkas, Martin White, Anthony Williams.

Large team, spanning 5 nodes, with a diverse skill set.

→ We will cover a lot of ground on particle, nuclear and astro aspects of dark matter theory.

Theory Partner Investigators

Amsterdam, Caltech, MIT

Theory Postdocs

Adelaide

Wei Su

BSM phenomenology, GAMBIT.

Melbourne

Jayden Newstead

Direct detection and DM phenomenology, at theory-experiment interface.

Xuan-Gong Wang Nuclear physics, DM-nucleon scattering cross sections, dark matter capture in stars

Michael Baker

General BSM and DM phenomenology expertise.

ANU

Giorgio Busoni:

Direct detection; dark matter capture in stars; collider and BSM pheno. (To start in 2021.)

Swinburne

To appoint in the area of cosmological simulations

Sandra Robles

Particle pheno & astrophysics. Including dark matter capture in stars & indirect detection.

Sydney

Ciaran O'Hare

Dark mater particle physics and astrophysics, including direct detection & cosmology

Theory Program Overview

- Dark matter model building and phenomenological constraints, using all available experimental data (Adelaide, Melbourne, Sydney).
- Sensitivity of direct detection experiments to dark matter candidates & novel experimental signatures (Adelaide, ANU, Melbourne, Sydney).
- Refinement of cross section calculations for nuclear recoil experiments (Adelaide, ANU).
- Particle astrophysics, as complementary probe of dark matter interactions, e.g. indirect detection, the capture of dark matter in neutron stars (Adelaide, Melbourne, Sydney).
- Cosmological simulations, e.g., local dark matter density and velocity profiles, which determine direct detection event rates; ability to distinguish between different classes of dark matter candidates (Swinburne, Sydney).

Theory-experiment interactions

- Theory is critical for making connections <u>across</u> the Centre's Research Programs. Aim is to embed theory within the experimental programs whenever that makes sense.
- Direct Detection lots of natural theory-exp links. Postdocs Giorgio Busoni, Jayden Newstead and Ciaran O'Hare, in particular, will help facilitate dialogue with the experimental direct detection programs.
- LHC established theory-exp dialogue in Melbourne and Adelaide via CoEPP that we should maintain.

Cross-node theory plans

- Multiple nodes are involved in all key research topics.
- Theory journal club started in July. It runs fortnightly and is well attended. Have had interesting and pedagogical talks spanning a good spectrum of topics, which have generated a healthy amount of discussion.
- Cross-node collaboration on projects has started.
- Postdoc hiring coordinated across nodes. Cross-node representation on selection panels.

Theory Program Outputs			PHYSICAL REVIEW LETTERS 125, 161803 (2020)			
Journal of Cosmology and Astroparticle Physics Searching for Sub-GeV dark matter in the galactic centre using Hyper-Kamiokande Nicole F. Bell, Matthew J. Dolan and Sandra Robles Combining outlier analysis algorithms to identify new physics at the LHC Melissa van Beekveld ^{a,b,c} Sascha Caron ^{b,c} Luc Hendriks ^b Paul Jackson ^d Adam Leinweber ^d Sydney Otten ^{b,e} Riley Patrick ^d Roberto Ruiz de Austri ^f Marco Santoni ^d		Explaining the XENON1T Excess with Luminous Dark Matter				
		-	Nicole F. Bell [©] , ^{1,*} James B. Dent, ^{2,†} Bhaskar Dutta, ^{3,‡} Sumit Ghosh [©] , ^{3,§} Jason Kumar, ^{4,} and Jayden L. Newstead [©] ^{1,5} PHYSICAL REVIEW LETTERS 125 , 131805 (2020)			
		to identify	Inverse Primakoff Scattering as a Probe of Solar Axions at Liquid Xenon Direct Detection Experiments James B. Dent ^{1,*} Bhaskar Dutta, ^{2,†} Jayden L. Newstead ^{0,3,‡} and Adrian Thompson ^{02,8}			
		-	Strong first o 2HDM confro	rong first order electroweak phase transition in IDM confronting future Z & Higgs factories		
CosmoBit: A GAMBIT module for computing cosmological observables and likelihoods		Wei Su* , Anthony G. Williams* , Mengchao Zhang [†] Triplet-Singlet Extended Standard Model: atter and Collider Phenomenology				
The GAMBIT Cosmology Workgroup: Janina J. Renk, ^{1,2,3} Patrick Stöcker, ⁴ Sanjay Bloor, ^{1,2} Selim Hotinli, ¹ Csaba Balázs, ⁵ Torsten Bringmann, ⁶ Tomás E. Gonzalo, ⁵ Will Handley, ^{7,5,9} Sebastian Hoof, ¹⁰ Cullan Howlett, ² Felix Kahlhoefer, ⁴ Pat Scott, ^{1,2} Aaron C. Vincent ^{11,12,13} and Martin White ¹⁴ Present and future stat cosmic-ray James B. Dent, ¹ B		Nicole F. Be Michael J. F	. Bell, ^a Matthew J. Dolan, ^a Leon S. Friedrich, ^{a,1} J. Ramsey-Musolf, ^{b,c,d} and Raymond R. Volkas ^a		Improved Treatment of Dark Matter Capture in Neutron Stars II: Leptonic Targets	
		future status cosmic-ray el es B. Dent, ¹ Bhaska	atus of light dark matter models from ray electron upscattering Bhaskar Dutta, ² Jayden L. Newstead, ³		Nicole F. Bell, ^a Giorgio Busoni, ^b Sandra Robles ^a and Michael Virgato ^a	
Global fits of axion-like particles to XENON1T and astrophysical data			and Natalia Tapia Arellano'	The Scote of the Sco	Singlet Model: A Scalar Singlet Extension togenic Model	
Peter Athron, ^{<i>a,b</i>} Csaba Balázs, ^{<i>a</i>} Ankit Beniwal, ^{<i>c</i>} J. Eliel Camargo-Molina, ^{<i>d</i>} Andrew Fowlie, ^{<i>b</i>} Tomás E. Gonzalo, ^{<i>a</i>} Sebastian Hoof, ^{<i>e</i>} Felix Kahlhoefer, ^{<i>f</i>} David J. E. Marsh, ^{<i>e</i>} Markus Tobias Prim, ^{<i>g</i>} Pat Scott, ^{<i>h,d</i>} Wei Su, ^{<i>i</i>} Martin White, ^{<i>i</i>} Lei Wu ^{<i>b</i>} and Yang Zhang ^{<i>a</i>}		FOR DARK MATTER PARTIC	Ankit Beniwal, Anthony G. Wi	ıl, ^a Juan Herrero-García, ^b Nicholas Leerdam, ^c Martin White ^c and Williams ^c		

Media Coverage

Jayden Newstead, Physics World podcast

	IOP	Publishing	f 🌶 🖸	ッ				
		physics world		Q	Magazine Latest 🔻 People 🔻 Impact			
	Room-temperature superconductor arrives at last,							
	a dark-matter detector mystery							
22 Oct 2020 Hamish Johnston								

Michael Baker

C Scitechdaily.com/new-theory-for-the-origin-of-dark-matter/

New Theory for the Origin of Dark Matter

TOPICS: Astrophysics Dark Matter Particle Physics Popular University Of Melbourne By UNIVERSITY OF MELBOURNE OCTOBER 19, 2020

Nicole Bell & Jayden Newstead

Physics about browse press collections

Q Search

SYNOPSIS

Theorists React to Potential Signal in Dark Matter Detector

October 12, 2020 • Physics 13, s132

A tantalizing signal reported by the XENON1T dark matter experiment has sparked theorists to investigate explanations involving new physics.

THE HON DAN TEHAN MP Minister for Education MEDIA RELEASE

6 November 2020

Peter Cox

Research to better understand properties of dark matter

A world-leading Australian physicist has been awarded a research grant to investigate new models of dark matter.

The Morrison Government is providing \$445,688 to fund research conducted by Dr Peter Cox from the University of Melbourne into dark matter.

Cross-node theory highlight: Dark Matter Capture in Neutron Stars

Melbourne: Nicole Bell, Sandra Robles, Michael Virgato Adelaide: Anthony Thomas, Theo Motta Giorgio Busoni **ANU:**

Dark Matter Capture in Stars

 \rightarrow complementary approach to DM-nucleon recoil experiments

- Due to their extreme density, *neutron stars* capture dark matter very efficiently.
- Capture probability is of order unity when $\sigma_{n\gamma} > \sigma_{th} \sim 10^{-45} \text{cm}^2$

DM

Consequences of dark matter capture in neutron stars

- DM kinetic energy heats neutron star by $\sim 1700 \text{ K}$
- DM annihilation would cause addition heating of ~700 K
 - \rightarrow Potentially observable in next generation telescopes
- If DM density becomes too high
 - ightarrow In some cases the neutron star can collapse to a black hole

Direct detection vs neutron star scattering							
		Direct Detection	Neutron stars				
	DM velocity	Non-rel $v \ll c$	Quasi-rel. $v \sim 0.5 c$				
	Cross-sections	Can be suppressed by velocity/momentum	Unsuppressed				
	Momentum transfer	< 0(100 MeV)	0(10 GeV)				
	Density	Normal matter	Extremely high density				

Two important physical effects are typically neglected:

Direct detection – Hadronic matrix elements calculated at zero momentum transfer Neutron star scattering – momentum transfer $\sim 10 \text{ GeV} \rightarrow \text{couplings suppressed}$

High density neutron star environment

 \rightarrow define an effective nucleon mass to express energy spectrum of interacting nucleons

NFB, Busoni, Motta, Robles, Thomas & Virgato, *in preparation*

Correctly including nucleon structure and strong interactions: → capture rate altered by up to 3 orders of magnitude

NFB, Busoni, Motta, Robles, Thomas & Virgato, in preparation

DM-Nucleon scattering in neutron stars

 \rightarrow Potential sensitivity below neutrino floor

SI scattering

NFB, Busoni, Robles, Thomas & Virgato, in preparation

DM-Lepton scattering in neutron stars

 \rightarrow Potentially much more sensitive than electron-recoil direct detection

Theory Program Outputs			PHYSICAL REVIEW LETTERS 125, 161803 (2020)			
Journal of Cosmology and Astropa	rticle Physics		Expla	aining the XEN	ON1T Excess with Lu	minous Dark Matter
Searching for Sub-GeV dark matter in the galactic centre using Hyper-Kamiokande Nicole F. Bell, Matthew J. Dolan and Sandra Robles Combining outlier analysis algorithms to identify new physics at the LHC Melissa van Beekveld ^{a,b,c} Sascha Caron ^{b,c} Luc Hendriks ^b Paul Jackson ^d Adam			Nicole F. Bell [©] , ^{1,*} James B. Dent, ^{2,†} Bhaskar Dutta, ^{3,‡} Sumit Ghosh [©] , ^{3,§} Jason Kumar, ^{4,} and Jayden L. Newstead [©] , ^{1,*} PHYSICAL REVIEW LETTERS 125 , 131805 (2020)			
		James B. Dent [©] , ^{1,*} E	Bhaskar Dutta, ^{2†} Jayo Strong first o 2HDM confro	kar Dutta, ^{2,†} Jayden L. Newstead, ^{3,‡} and Adrian Thompson, ^{2,§} rong first order electroweak phase transition in DM confronting future Z & Higgs factories		
CosmoBit: A GAMBIT module for computing cosmological observables and likelihoods		Wei Su [*] , Anthony G. Williams [*] , Mengchao Zhang [†] Triplet-Singlet Extended Standard Model: atter and Collider Phenomenology				
The GAMBIT Cosmology Workgroup: Janina J. Renk, ^{1,2,3} Patrick Stöcker, ⁴ Sanjay Bloor, ^{1,2} Selim Hotinli, ¹ Csaba Balázs, ⁵ Torsten Bringmann, ⁶ Tomás E. Gonzalo, ⁵ Will Handley, ^{7,8,9} Sebastian Hoof, ¹⁰ Cullan Howlett, ² Felix Kahlhoefer, ⁴ Pat Scott, ^{1,2} Aaron C.		Nicole F. Be Michael J. F	Nicole F. Bell, ^a Matthew J. Dolan, ^a Leon S. Friedrich, ^{a,1} Michael J. Ramsey-Musolf, ^{b,c,d} and Raymond R. Volkas ^a		Improved Treatment of Dark Matter Capture in Neutron Stars II: Leptonic Targets	
Present and future statu cosmic-ray James B. Dent, ¹ Bh		future status cosmic-ray el s B. Dent, ¹ Bhaska	tus of light dark matter models from y electron upscattering haskar Dutta, ² Jayden L. Newstead, ³		Nicole F. Bell, ^a Giorgio Busoni, ^b Sandra Robles ^a and Michael Virgato ^a	
Global fits of axion-like particles to XENON1T and astrophysical data			and Natana Tapia Arenano	The Scote of the Sco	Singlet Model: A Scalar Singlet Extension Stogenic Model	
Peter Athron, ^{<i>a,b</i>} Csaba Balázs, ^{<i>a</i>} Ankit Beniwal, ^{<i>c</i>} J. Eliel Camargo-Molina, ^{<i>d</i>} Andrew Fowlie, ^{<i>b</i>} Tomás E. Gonzalo, ^{<i>a</i>} Sebastian Hoof, ^{<i>e</i>} Felix Kahlhoefer, ^{<i>f</i>} David J. E. Marsh, ^{<i>e</i>} Markus Tobias Prim, ^{<i>g</i>} Pat Scott, ^{<i>h,d</i>} Wei Su, ^{<i>i</i>} Martin White, ^{<i>i</i>} Lei Wu ^{<i>b</i>} and Yang Zhang ^{<i>a</i>}		FOR DARK MATTER PARTIC	Ankit Beniwal, Anthony G. Wi	al, ^a Juan Herrero-García, ^b Nicholas Leerdam, ^c Martin White ^c and Williams ^c		