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•Low-mass bosonic dark matter -> 
•Appears in experiments coherently via wave phenomena rather than as individual quanta. 
•QCD axion and more general axions (Axion Like Particles)
•Dark photons
•Scalar dark matter (i.e. Dilaton)

•Current experimental techniques -> 
•Broadband and resonant searches via cavities, circuit oscillators, NMR etc. 
•Utilizes low noise readout with quantum sensing and amplification technologies.
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(4) Low mass detectors for axions with LCR Circuits, ADMX-SLIC  (Superconducting 
Lc-circuit Investigating Cold axions) UF (Sikivie and Tanner) and Broadband Electrical 
Action Sensing Technique (BEAST) UWA

(5) AC Halloscope with Low  Noise Oscillators (UPconversion Loop Oscillator Axion 
Detector (UPLOAD) UWA

(6) Light Scalar Dark Matter  (Dilaton) Clock  Comparisons, Acoustic Detectors  UWA
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• Room for more input from Centre Nodes, to join ORGAN Collaboration?

• For example, application -> 3-year PDRA -> kickstart WISP program at Adelaide with UWA 
Supported by the SA government in the form of $100,000/year?

Centre Involvement Paul Altin

Ed Daw ADMX CollaborationWilczek  Group

UWA



https://www.qdmlab.com/

Quantum Technologies  and 
Dark Matter Research LaB
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Design Physics Package: 
-> Sensitive to the type of Dark Matter of Interest
-> Axion, Dilaton etc.
-> Theory interacts with Experiment: How Dark Matter 
interacts with Standard Model Particles, Optimise Signal

Design Readout with Lowest Noise Possible:
Optimize Noise

Precision Microwaves
Precision Optics

Precision RF
Precision Acoustics

Precision Spin ESR, NMR
Precision Hybrid Quantum Systems

Magnon/Photon
Phonon/Photon

Low Noise Quantum Limit
Quantum metrology to surpass

Eg. Photon Counter at Microwaves

Signal To Noise Ratio (SNR) Capable of 
Detecting known Dark Matter Density?




Resonator/Oscillator/Clock Zoo
Phonons

SAW

BAW

Structures

Magnons

Bulk

Spin-Torque

Photons

LC-circuits

Metallic Cavities

Dielectric Cavities

Atoms

Electron transitions

Nuclear transitions

Hyperfine transitions



(2) ORGAN
(4) LCR Circuits

(5) UPLOAD

(6) SCALAR DARK MATTRR



(1) ADMX



White Dwarf Cooling

Our work

DFSZ model

Photons Magnons Interaction
36MHz in 6 MHz blocks 
from 8hrs of averages

Centred at 
8.2GHz

This experiment can distinguish Axion models, if 
ever detected we will make a dedicated 

experiment 

arXiv:1811.09348v3 [physics.ins-det] 

Cavity-Magnon Polariton Axion Detection Experiment(3) MAGNON

https://arxiv.org/abs/1811.09348v3
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QCD: Why is the neutron electric dipole 
moment so small? 

10-15 m

Quarks should give a charge distribution
Naive estimate gives dn ≈ 10-16 e-cm

*from Aaron Chou (FNAL)

This leads to the “Strong CP Problem”: Where did QCD CP violation go?
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DC B-field

The AC Axion Haloscope Technique

agaγγ

ω1

ω2

ωa = ω1 ± ω2

The Axion Haloscope Technique

Lagrangian gives effective strength

Axion-Photon Coupling to Search for Axion

gaγγ
a

Microwave Cavity

ωa = ωc
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• Otherwise, model as a Narrow Band noise source, as a Spectral Density with a 
Bandwidth.



Dark Matter Axion Virialization 
• Virialization of dark matter halo -> Dissipative effect that converts the kinetic energy 

of collapse into random motions.

• If no virialization the dark matter axion is coherent.   a(t) = a0Sin(ωat + ϕ)

• Otherwise, model as a Narrow Band noise source, as a Spectral Density with a 
Bandwidth.

SA( f )

fa

Δf
fa

Δf
fa

∼ 10−6



Possible Cold Flows Not Virialized
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WISP Direct 

Detection

ADMX Run 1b, 1c, 2A, 2B

ADMX Upgrade, 8-16 µeV Design/Proto Construct

ORGAN Design/Proto

ORGAN Upgrade Design/Proto

Major Experiments: Summary

•ORGAN nearly ready for first run
•ADMX: Gen 2, 0.6-2 GHz or 2.5-8.3 micro eV mass (Approved to run to 2022 USA Financial Year)
•Run 1a: 2016-2017
•Run 1b: 2018 (Some data analysis still ongoing)
•Run 1c: 2020 to reach 1030  MHz (Current run)
•Run 1D: 1030-1200 MHz
•Run 2A: 1200-1500 MHz and 2B 1500-2000 MHz

•ADMX Gen 2, 2-4 GHz or 8.3-16.4 micro eV mass (Approved to run to 2022 USA Financial Year)
•Run A: 2-3 GHz
•Run B: 3-4 GHz





• Phase 1, Darker green HEMT-based amplifiers, and TM010, tuning 
rod-based resonators, form factor of 0.4, loaded Q of 30,000.

• Upgrade Lighter green -> Photon Counter, form factor of 0.45, a 
loaded quality factor of 50,000, and 50% greater volume

• Phase 2, Darker red quantum limited linear amplifiers (2-4 cavities)  
Quantum limited

• Lighter red, single photon counter

ORGAN
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NEXT CAVITY DESIGN: New Concept

TM410-like

TM410

TM410 

TM410-like 

Dielectric Wedge Resonator

! Add dielectrics in alternate field lobes → boost form factor

! Design with Sapphire, Large Improvement in Sensitivity

! Tested with Teflon



UPLOAD
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95% confidence exclusion zone (gray) 



Nb Tesla Cavities

TE 011 MODE, 2.5 GHz TM 010 MODE, 1.3 GHz

We would like to gain interest from Fermilab to collaborate on this project and add to the LOI





Axions: Letters of Interest: SNOWMASS




