

WIMP Direct Detection: Progress and Plans

Greg Lane Australian National University

Australian Government Australian Research Council

Australian National University

Direction detection related programs

Program		2019	202	0	2021	2022	2023	2024	2025	2026	2027
WIMP Direct Detection	SABRE proof-of-principle (Italy)										
	SABRE South										
	Cryogenic Detector										
	CYGNUS small prototype										
	CYGNUS 1m ³ prototype										
WISP Direct Detection	ADMX Run 1b and Run 1c										
	ADMX Upgrade, 8-16 μeV				Design	/Proto	Cons	struct			
	ORGAN										
	ORGAN Upgrade										
R&D for WIMP &	Room temp. NaI and veto systems										
WISP Searches (including	Cryogenic bolometer/phonon sensors										
Precision Metrology)	TPC large scale										
	Precision frequency schemes										
Nuclear Metrology	ICPMS – Develop native capability										
	HPGe – Rationalise native capability										
	AMS Improve ToF system										
	AMS Improve resolution of ion chamber										
	AMS Integrate electrostatic analyzer										

Strong overlaps across research themes

CDM advantages:

- Cross-pollination across disciplines (nuclear, particle, astro, metrology, quantum)
- Interplay between theory and experiment.

Need for extensive collaboration across nodes for successful experiments

	WIMP Direct Detection							
Institution	CI	RA + Engineer/Tech						
Adelaide	Hill 0.4	Bolognino (A) 1.0 Level B 0.5 (First 3 years)						
ANU	Lane 0.4, Stuchbery 0.4, New tenure track 0.4	Bignell (B) 1.0, Slavkovska (A) 0.5 Level A 1.0 (2021) Level A 1.0 (starting 2022) Engineer 1.0 (2021)						
Melbourne	Barberio 0.4, Urquijo 0.4, Taylor 0.2	Level A 1.0, Level B 1.0, Eng 0.5-1.0						
Swinburne	Duffy 0.2, Mould 0.2	Level B 1.0, Tech 0.5						
Sydney	New tenure track, 0.4	Level A 1.0						
UWA	Tobar 0.1, Goryachev 0.1	McAllister (A 0.4), A/B 0.5, Osborne (Tech 0.5)						
Total FTE	3.6	9.9 research, 2.5-3.0 technical						

These are only

- Cls, Als
- New appointments paid by CDM funds.

It does not include:

- Some postdocs/ engineers already in the nodes.
- Extensive and important student involvement
- Expectations for significant theoretical collaboration

WIMP DD is a **large program**, but there is still considerable room for additional personnel to get involved.

Program		2019	202	20	2021	2022	2023	2024	2025	2026	2027
WIMP Direct Detection	SABRE proof-of-principle (Italy)							•			
	SABRE South										
	Cryogenic Detector										
	CYGNUS small prototype										
	CYGNUS 1m ³ prototype										
	CYGNUS 10m ³ full scale										
R&D for WIMP Searches	Room temp. NaI and veto systems										
(includes some Precision	Cryogenic bolometer/phonon sensors										
Metrology)	TPC large scale										
	Precision frequency schemes										

Detecting WIMPs – Annual Modulation Signature

Standard halo model: Spherical halo of cold, dark matter permeating the galaxy with ρ_X ~0.3 GeV/cm³

Detector Signal

DAMA: Bernabei et al, arXiv:1805.10486

25 x 10 kg Nal(Tl) at Gran Sasso, Italy

Global DM efforts with Nal(TI)

COSINE: PRL 123 (2019) 031302 -0.0083 ± 0.0068 cpd/kg/keV

COSINE, SABRE, PICO-LON are developing low background NaI(Tl) crystals DAMA: 0.0095 ± 0.0008 cpd kg⁻¹ keV⁻¹

DM-Ice @ South Pole

SABRE – North and South

Key metric: background in 2-6 keV region: DAMA (~1 dru), ANAIS (~3.6 dru), COSINE (~2.5 dru) SABRE design background of 0.36 dru

Nal crystal development at Princeton

PoP (1 crystal) at LNGS in Italy

Monte Carlo simulation: Astroparticle Physics 109 (2019) 1-9. SABRE Project and SABRE PoP: Eur Phys J C (2019) 79:363

SABRE South – Straight to full scale (7 Nal crystals) at SUPL

RESEARCH: SABRE

ARC CENTRE OF EXCELLENCE FOR DARK PARTICLE PHYSICS Aiming for installation in late 2021 and full operation in 2022

SABRE South status update

Executive Group managing SABRE South progress:

Elisabetta Barberio (Spokesperson), Greg Lane (Technical Coordinator, ANU), Tiziano Baroncelli (Engineer) Alan Duffy (Swin), Gary Hill (Adel), Geoff Brookes (Swin), Phill Urquijo (Melb)

Significant hardware exists...

- Working towards a late 2021/early 2022 start
- Obvious dependence on **SUPL completion date**
 - Long term measurement of background (muons, gammas, neutrons) within SUPL is critical for interpretation of SABRE results and future experiment planning
- Budget for SABRE from ARC LIEF largest uncertainties are:
 - Final price of shielding Radioactivity measurements complete
 - Method of crystal production SICCAS / RMD in progress Coordination with COSINUS (cryogenic Nal experiment at LNGS) and SICCAS (Chinese Als Ge, Zhu and Yue) is underway. Also been contacted by RMD.

Many people collaborating and working very hard to get SABRE operational.

See talks from Phill Urquijo, Andrew Stuchbery, Lindsey Bignell, Federico Scutti, Francesco Nuti and possibly more... Many students have key roles!

Program		2019	202	20	2021	2022	2023	2024	2025	2026	2027
WIMP Direct Detection	SABRE proof-of-principle (Italy)							•			
	SABRE South										
	Cryogenic Detector										
	CYGNUS small prototype										
	CYGNUS 1m ³ prototype										
	CYGNUS 10m ³ full scale										
R&D for WIMP Searches	Room temp. NaI and veto systems										
(includes some Precision	Cryogenic bolometer/phonon sensors										
Metrology)	TPC large scale										
	Precision frequency schemes										

Other WIMP Detector Concepts

Cryo-DM

Low-mass WIMP detection with a cryogenic crystal or superfluid

Will combine R&D from WIMP and Advanced Metrology Themes

Conceptual investigations – no hardware as yet.

See Maxim Goryachev's talk

Program		2019	202	20	2021	2022	2023	2024	2025	2026	2027
WIMP Direct Detection	SABRE proof-of-principle (Italy)							•			
	SABRE South										
	Cryogenic Detector										
	CYGNUS small prototype										
	CYGNUS 1m ³ prototype										
	CYGNUS 10m ³ full scale										
R&D for WIMP Searches	Room temp. NaI and veto systems										
(includes some Precision	Cryogenic bolometer/phonon sensors										
Metrology)	TPC large scale										
	Precision frequency schemes										

CYGNUS – Directional dark matter detection

- Directional dark matter detection with gas TPCs (PI Spooner led the DRIFT experiment)
- "Proto-collaboration" with a long-term vision for a worldwide network
 - dark matter astronomy
 - important role of SUPL (southern hemisphere).
- Australia provides a member of the International Steering Committee (UK, Australia, Italy, Japan, USA).
- R&D scale detectors currently being designed/built locally at ANU and Melb.

CYGNUS – Gas TPC – Really?

Rich event information makes up for low target mass.

Need low energy threshold, absolute positioning, directionality, vector sense, and particle ID.

Sensitivity discussion in recent CYGNUS concept paper: arXiv 2008.12587.

(c) 104 keVr (~ 66 keVee) nuclear recoil

See talk today from Ciaran O'Hare and also his recent CoE seminar

Theory/experiment collaboration required to investigate physics case:

- electron recoil versus nuclear recoil
- neutrino physics

100k m

 10°

CYGNUS plan

- R&D over first few years at small scale eventual move to large scale.
- Funding for initial R&D activities PI (DSTG) may provide some. Another \$150k over the first two years from node budgets.

2020/21: TPC with GEMs and MWPC/optical readout (ANU/Melb) for gas characterisation studies (concept at top right)

TPC with GEMS and Silicon readout (Melb/DSTG/ANU)

Lessons learned will feed design of 1m³ scale CYGNUS-OZ prototype

Contribute to global CYGNUS efforts (engineering design, testing across all years)

- 2022/23: Building 1m³ scale CYGNUS-OZ Design at the 10m³ scale of CYGNUS10-OZ
- 2023/24: Installation of 1m³ CYGNUS-OZ in SUPL.

2024/25: Decisions regarding SABRE / CYGNUS10-OZ priorities in SUPL.

CYGNUS – Lite (Lachlan McKie ANU student, 2020)

See also Lindsey's talk

Program		2019	2020	2021	2022	2023	2024	2025	2026	2027
WIMP Direct Detection	SABRE proof-of-principle (Italy)				·				•	
	SABRE South									
	Cryogenic Detector									
	CYGNUS small prototype									
	CYGNUS 1m ³ prototype									
	CYGNUS 10m ³ full scale									
R&D for WIMP Searches	Room temp. NaI and veto systems									
(includes some Precision	Cryogenic bolometer/phonon sensors									
Metrology)	TPC large scale									
	Precision frequency schemes									

Fully expect new initiatives, changes and evolution of this plan, over the lifetime of the Centre.

Australian Government Australian Research Council

INTERNATIONAL PARTNER ORGANISATIONS:

UNIVERSITEIT VAN AMSTERDAM

