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The LHC and the ATLAS Experiment

Detectors record the path of produced
particles and their deposited energy

The Large Hadron Collider delivers
proton-proton collisions to several ex-
periments situated around its ring
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Event Reconstruction
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Event Reconstruction

Pions are the most abundant particle produced in LHC proton-proton
collisions

Understanding how to reconstruct pions is essential!

Goals: improve classification and energy scale calibration of pions using
ML techniques

Many tasks already make use of machine learning - plenty of prior work
to build on

Lots of information in shower shape and depth to leverage
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Datasets

Explored deep learning techniques using two different types of datasets:
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0.
ATLAS Simulation Preliminary 010
015} Average x° event in EMB1
0.10] 5 < Cluster Energy / GeV < 20 0.08
0.05
0.06
0.00 [ —
~0.05 0.04
~0.10
002
—0.15]
029 .2 -0.1 0.0 0.1 02 0.00
Ao
-2
0. 10
ATLAS Simulation Preliminary 35
0.15 Average nt* event in EMB1
0.10] 5 < Cluster Energy / GeV < 20 3.0
0.05 25
0.00 P — 20
-0.05 15
~0.10 1.0
-0.15 05
e PR 00 01 02
)

Albert Kong (UoA)

soke) 1od saysnpo Jad uonoes) ABieu3

Jsake| 1ad Jaisnp sad uooeyy ABieuz

with Pions

Point cloud

November, 2023

4/10



Machine Learning Architectures: Deep Sets

Set of M cells per cluster

Cell 1 CellM

@ Deep Set Theorem:
can parameterise any
observable of

Dense100 Dense100 variable-length sets of

Dense100 Dense100 particles using

particle properties
Dense 128 Dense 128 . .
@ Using Particle Flow

(specialised Deep Set
framework for use in
Dense100 particle physics)

Latent Space Operation

Dense100 @ Input features are
(log) cell energy,
sampling layer, 7,

and ¢

Dense100
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Machine Learning Architectures: Graph-based Networks

Graph Neural Network

Transformer Network
Edges set by detector geometry

Edges set by self-attenuation

) GNN Block
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Node features: cell energy, sampling layer, n, An, ¢, A¢, and minimum
radial distance of cell to shower axis r |
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Classification Results
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@ Using only calorimeter information

@ Higher values of rejection show better performance for the same
selection efficiency
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Regression Results
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Truth Particle Energy [GeV]

@ Using both calorimeter and tracking information

10¢
Truth Particle Energy [GeV]

@ Ideal value is a response of 1 across the entire energy range
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Regression Results

All models ML models only
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@ Lower values of IQR/Median correspond to better resolution

@ Network combines good calorimeter performance at high energy with

good track resolution at low energy
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Conclusion

@ Neural networks to classify pions as charged or neutral - great
performance improvement over traditional methods

@ Neural networks to perform energy calibration - significant improvement
in both energy scale and resolution for classified topo-clusters

@ All of this possible by better leveraging the information contained in the
shapes of showers as they pass through the various calorimeter layers
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