

1

Xenon Medical Imaging System (XEMIS)

Dominique Thers (<u>dominique.thers@subatech.in2p3.fr</u>) SUBATECH Laboratory

PET/Total body

- Increase FOV (Field Of View)
- Explorer: increase axial FOV of PET camera

PET world race for personalized medicine

PET/Time Of Flight

- Reduce Length of LOR (Line Of Response)
- Very good time resolution of detectors

PET/Depth Of Interaction

- Reduce Parallax effects on the whole
 FOV with precise DOI measurement
 - Depth segmentation

2m axial FOV

10 ps challenge

DOI for parallaxe recovering

Smaller dose, faster exam, dynamical imaging But only "photo-pic fraction" detection Compton imaging is neglected

Compton interactions dominates HE γ -rays interaction

UNIVERSITÉ DE NANTES

Some basic considerations:

a 511 keV: Compton/PE = 73/21 *a* 1 MeV: Compton/PE = 90/8

γ-rays interaction length is also increasing more and more (max at 4 MeV thanks to pair production):

a 511 keV: 3.4 cm *a* 1 MeV: 5.9 cm

Efficient Compton camera should be monolithic and large enough

Stay actually the main driver for HE Compton Cameras and XEMIS future

XEMIS (XENON MEDICAL IMAGING SYSTEM)

- Total Body, TOF like, parallax free 3γ medical imaging technique
- High Rate Single Phase LXe Time Projection Chamber
- XEMIS2 first Compton telescope with LXe installed in Hospital

Parallax free with LXe TPC used as ionization chamber for Compton imaging

From E. Aprile et al., "Observation of Anti-correlation between Scintillation and Ionization for MeV Gamma-Rays in Liquid Xenon," Physical Review B, vol. 76, 2007.

Goal : 100 µm X,Y and Z spatial resolution on **Compton/Photoelectric vertices position**

8

Direct 3D location of the radioactive source: res. along LOR < 1 cm (FWHM) for small animal FOV

XEMIS2 goals:

50 ps "TOF like" with 5-10% global sensitivity

MT Atlantique Pedger-Pag de la Loie Ende Mines - Neissen thanks to good spatial and energy resolution (only ns time resolution)

XEMIS2 LXe handling

Purification Loop

ReStoX

Cryostat

Low P vessel: 2 bars max Xenon : 200 kg total Active mass: 70 kg Photodetectors and FEE inside LXe

Cho-

Max Xe flow: 30 nl/mn

ubatech

Scientific Collaboration **Air Liquide** Cooling with LN₂

300 kg Aluminum Head Internal Pressure 0-70 bars 200 kg Xe capacity

Warm up ReStoX test with LXe

ubatech

UNIVERSITÉ DE NANTES

XEMIS2: High Purity LXe Compton Camera

Central cathode

Charge readout

2 x 10⁴ 3.1 x 3.1 mm² pixels with ultra-low noise cold FEE

PMTs & Support

Light readout

64 x 1" Hamamatsu PMTs in LXe Cover 32 sectors in φ

Full Gate/GEANT4 simulation High sensitivity 3γ > 7% along the FOV

Event by event simulation with parametrization of light and charge yields

Used to test reconstruction and deconvolution algorithms for 3γ imaging

 $3^{rd} \gamma$ Cone and LOR reconstruction

Based on topological considerations:

Compton Edge Threshold γ range in LXe Geometrical vs Compton angles comparison Cone-LOR xPoint inside the XEMIS2 FOV

3γ sensibility variation and resolution

Preliminary Based on simulation

Good uniformity for Resolution and Sensibility in the whole FOV of XEMIS2 3γ sensibility variation and resolution

Event evolution through reconstruction

ubatech

Much still to be optimized for the future, place for research and progress in the 3γ reconstruction

TOF-PET ML-EM reconstruction algorithms

Based on simulated datas

Cylindrical rat phantom (diameter 7 cm, length 12 cm) 2, 4, 8, 10, 12 mm radius hot sphere (⁴⁴Sc contrast 15) Activity limited to 20 kBq, 20 mns exposure

Promising results for all modalities Reconstruction with CASToR open source Reconstruction software available

XEMIS2 PET

XEMIS2 3γ "TOF = 100 ps" **XEMIS2 3γ "TOF = 50 ps"**

Also, very similar images obtained with 3γ PSF and matrix system based deconvolution algorithms (with CRCINA at Nantes)

XEMIS2, ⁴⁴Sc labeling In collaboration with Nantes INSERM CRCINA and GIP ARRONAX

Good β^+/γ emitter radionuclide for 3γ medical imaging: ⁴⁴Sc

ubotech

S1 Prompts scintillation light detection with 1 inch PMTs

64 1" PMTs to cover ϕ acceptance QE 32%

Incident particle	τ_s (ns)	$ au_t$ (ns)	$ au_r$ (ns)	I_s/I_t	
Electrons	2.2 ± 0.3	27.0 ± 1.0	~ 45	0.05	-
		000 (IIII) 000 (IIIII) 000 (IIIIII) 000 (IIIII) 000 (IIIIII) 000 (IIIII) 000 (IIIIII) 000 (IIIII) 000 (IIIII) 000 (IIIII) 000 (IIIII) 000 (IIIII) 000 (IIIII) 000 (IIIIII) 000 (IIIII) 000 (IIIII) 000 (IIIIII) 000 (IIIII) 000 (IIIII) 000 (IIIII) 000 (IIIII) 000 (IIIII) 000 (IIIIII) 000 (IIIII) 000 (IIIIII) 000 (IIIIII) 000 (IIIII) 000 (IIIIIII) 0000 (IIIIII) 000 (IIIII) 0		[m m	
Time resolution		÷ 50	ν/ γ	n I	l

Time resolution dominated by LXe in XEMIS2

More than 15 fired PMTs with 3γ event Mainly with a small number of photons Between 1 and 10 pe/PMT expected (reflection not considered)

2 2

Prompts scintillation XEMIS2 DAQ

Each PMT is self-triggered, signal digitized with leading and trailing edge times measurement (200MHz)

ubatech

Serial LVDS link up to SPARTAN FPGA, Continuous DAQ with max rate of 10° signals/s/PMTs

GROUPE XENON

Ionization measurement in XEMIS2

LXe ionization chamber properties very powerful (LXeGRIT, Exo, ...) for 10 keV-MeV recoils electrons

Most of experiments use fast digitizers, not realistic for high rate and large number of pixels.

Technical option taken by XEMIS projects: just one sample for charge and one for time

Two main worries: Frish grid efficiency and induction on non-collecting electrodes

Development of new Micro-Pattern electrodes for electron collection

ubatech

Ionization electrons collection with MIMELI

MIMELI Micromesh assembling at CERN

609

27

3 main steps:

Anode and mesh washing with demineralized water
 Baking in high vacuum
 Assembling and HV test on dry air

 μMeshes with copper GEM-HD geometry also assembled

XEMIS2 charge read-out electronics

The known DAQ system cannot meet the requirements for use in LXe Self-triggered high rate ionization signal readout architecture

Cold Front-end electronic to reduce the electronic noise

ubatech

only 1 amplitude and 1 time per ionization pulse escape from the cryostat

only 2 data lines/PU escape the vacuum (to the air) for all the measured charges

Subatech

XEMIS2 contains specific ASICS

29

XEMIS2 charge electronics test bench at Subatech

Test bench at RT with all the chain from Idef-XHD_LXe to storage disc

1 End-cap : Around 10 000 channels

32 PU cards in vacuum -

Cold electronic to PU card with 32 Stripped Kapton flex

PU cards cooled with external cold water recirculation system (10W = expected leak connected on LXe per endcap)

1 Spartan charge per $\frac{1}{2}$ endcap outside the cryostat at RT

ubatech

XEMIS2 noise measurement on charge electronics at RT

Noise in electrons (Coordinate xy) Without Injection (DATA 20221012 third batch)

31

COLD Test with 64 pixels on XEMIS1 MIMELI+Idef-XHD_LXe+XTRACT+PU on XEMIS1 (64 channels) 2 kV/cm

Jubatech

COLD Test with 64 pixels on XEMIS1 MIMELI+Idef-XHD_LXe+XTRACT+PU on XEMIS1 (64 channels) 2 kV/cm

Jubatech

Rate and self-triggered channels

COLD Test with 64 pixels on XEMIS1 MIMELI+Idef-XHD_LXe+XTRACT+PU on XEMIS1 (64 channels)

COLD Test with 64 pixels on XEMIS1 MIMELI+Idef-XHD_LXe+XTRACT+PU on XEMIS1 (64 channels) 2 kV/cm

Jubatech

Spatial resolution transverse to the drift direction

35

COLD Test with 64 pixels on XEMIS1 MIMELI+Idef-XHD_LXe+XTRACT+PU on XEMIS1 (64 channels)

XEMIS2 DAQ From detector to disk

Synchronization with 200 MHz clock No external trigger

Light signal: leading edge and TOT up to 1 Mevts/s per channel on 64 self triggered channels

<u>Charge signal:</u> time and amplitude up to 3 kevts/s per channel on 20k self triggered channels

High data flow rate and transfer: 1 To raw data expected on disk in 20 mns

ubatech

XEMIS2 DAQ is ready

Subatech

IMT Atlantique Bretagne-Pays de la Loin

UNIVERSITÉ DE NANTES

XEMIS2 DAQ infrastructure at CIMA

XEMIS2, research program In collaboration with Nantes INSERM CRCINA and Nantes GIP ARRONAX

3γ image with 20 kBq of ⁴⁴Sc activity in the Field of View

XEMIS2 technology

First Monolithic Compton telescope dedicated to medical imaging

Timeline : scientific exploitation in 2024

