A (partial) theory summary: WIMPs, sub-GeV & axions

WIMPs – where do we stand?

WIMP simplified models

White (UoA) & GAMBIT collaboration Eur.Phys.J.C (2023)

Dirac fermion DM + vector mediator

Included in likelihood

- Relic density
- Indirect detection (Fermi)
- Direct detection LHC searches: monojet, dijet

WIMP simplified models

Dirac fermion DM

White (UoA) & GAMBIT collaboration Eur.Phys.J.C (2023)

Majorana fermion DM

Peter Cox - University of Melbourne

Dark matter mass m_{DM} [GeV]

Sub-GeV dark matter

- DM can be produced thermally for masses ≥ keV
- Models commonly feature light mediators
- Dark sectors that interact very weakly with SM (e.g. freeze-in DM)

Sub-GeV dark matter

How to probe sub-GeV dark matter?

- CMB, BBN ---- see talks by Céline Bœhm & Josh Wood
- Indirect detection (annihilation or decay)
- Low-threshold direct detection experiments
- Migdal effect
- Boosted dark matter
- DM capture/annihilation in compact objects
- DM production in beam dump experiments

• ...

Migdal effect – precision theory

PC (UoM), Dolan (UoM), McCabe, Quiney Phys. Rev. D 2023

Ongoing neutron scattering experiments to validate theory

Cosmic ray upscattered DM

DM kinetic energy, T_{χ} (GeV)

Cosmic ray upscattered DM

• DM-SM interaction appears twice (CR upscattering & detection)

Only sensitive to large cross-sections
→ light mediators

• Constraints from both direct detection & neutrino experiments

Cosmic ray upscattered DM

Bell, Newstead, Shaukat Ali (UoM) 2309.11003

• *But,* mediator is also constrained by meson decays, stellar cooling

 $\chi \longrightarrow q$ $\bar{\chi} \longrightarrow \bar{q}$

See Iman Shaukat Ali's ECR workshop talk

Neutron Star Heating

Baryakhtar et. al. '17

Neutron stars *efficiently capture* dark matter due to their high density

DM Annihilation

Isolated neutron stars expected to cool to 1000K after ~10Myr

Coolest known neutron star has temperature $4 imes 10^4$ K

NS heating (projected sensitivity)

Equation (UoM)Busoni (ANU)Virgato (UoM)+ (in progress)Bell (UoM)Busoni (ANU)Thomas (UoA)Virgato (UoM)+ JCAP (2021)

- Observation of old, cold NS would constrain DM interactions
- Sensitivity to velocity/momentum suppressed interactions

Producing DM at beam dumps

Dark sector particles can be produced in beam dumps and detected with neutrino detectors

Detecting DM with beam dumps

Newstead (UoM)+ Phys. Rev. Lett. (2023)

Slide credit: J. Newstead

Detecting DM with beam dumps

Sub-MeV direct detection: collective excitations

Sub-MeV mass DM interacts directly with collective excitations (e.g. phonons)

Superfluid Optomechanics

Superfluid optomechanical cavities are *single phonon detectors*

Figure: Kashkanova+ '16

superfluid ⁴He filled optical cavity

Coupling between acoustic (density) modes and optical modes

converts ~µeV phonons into ~eV photons

Optomechanical systems have demonstrated µeV phonon counting (e.g. Patil et. al. '22)

Optomechanical Dark Matter Instrument (ODIN)

PC (UoM), Dolan (UoM), Goryachev (UWA)+ arXiv:2306.09726

filters

۰.,

Proposal for direct detection of keV-scale dark matter

Projected sensitivity

Goldstone boson of spontaneously broken $U(1)_{PQ}$

Production of DM axions depends on when PQ symmetry broken:

Pre-inflationary PQ breaking

- Same initial field value everywhere
- "Misalignment" production mechanism

Post-inflationary PQ breaking

- Field takes on different values in different patches
- Axions produced from decay of topological defects (strings, domain-walls)

 $10^{-5} \,\mathrm{eV} \lesssim m_a \lesssim 10^{-3} \,\mathrm{eV}$

Axion miniclusters

(post-inflationary PQ breaking)

- Gravitationally bound clumps of axions with similar mass to asteroids and radii ~AU
- Contain ~75% of axions before galaxy formation

Do these survive until today or are they tidally disrupted?

Significant implications for haloscopes

O'Hare (UoS)+ Phys. Rev. D (2023)

Tidal disruption & streams

Local DM distribution is sum of hundreds of streams:

 $ho_{\rm str}$ [GeV cm⁻³] 10^{-5} 10^{-4} +5 mpc 15 years-Galactic Y 10 years-5 years-To galactic centre -5 mpc -5 mpc +5 mpc Ro Galactic X

O'Hare (UoS)+ (2023)

DFSZ axions & domain walls

Benchmark DFSZ model has stable domain walls

• Excludes post-inflationary scenario in minimal model

Can be solved if PQ charges of quarks are *flavour-dependent*

Leads to flavour violation, e.g. $K^+ \to \pi^+ a$

$$f_a > 8.3 \times 10^{11} |C_{sd}^V| \,\mathrm{GeV}$$

🗙 See Maaz Hayat's poster

PC, Dolan, Hayat, Thamm, Volkas (UoM) arXiv:2310.16348

Very diverse range of theory activity within the Centre, from axions to WIMPs and beyond...

