Impact of Nuclear Structure on Nuclear Responses to WIMP Elastic Scattering 2023 CDM Annual Workshop

My Gang

The team

Prof. Cedric Simenel

Prof. Andrew Stuchbery

Dr Giorgio Busoni

Cultural Sníppet - Palestíne

Tatreez (embroidery)

Dírect Detection Searches

DM-Nucleus Elastic Scattering

Building blocks of dark matter-nucleus elastic scattering theory

DM-Nucleus Elastic Scattering

DM-Nucleus Elastic Scattering

Research Goal

Effect of nuclear structure: a neglected aspect

Investigate the sensitivity of Dark Matter-Nucleus scattering to nuclear structure

$$\frac{dR}{dE_R} \propto \int v \, d^3 v \, \sum_{ij} \sum_{N,N'=p,n} f_v(\vec{v}) \qquad R(\vec{v},q)_{ij}(N,N') \qquad F(q)_{ij}(N,N')$$

Differential scattering (interaction) rate

Form Factor -Nuclear Structure

Nuclear Structure- Standard Characterísatíon

Early models use a simple picture

Nuclear Structure- Standard Characterísatíon

Early models use a simple picture

Need to consider motions of nucleons in nucleus!

New Interactions From Nucleon Motion

- A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, Journal of Cosmology and Astroparticle Physics (2013), ISSN 14757516.

- N. Anand, A. L. Fitzpatrick, and W. C. Haxton (2013), URL http://arxiv.org/abs/1308.6288

New Interactions From Nucleon Motion

- A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, Journal of Cosmology and Astroparticle Physics (2013), ISSN 14757516.

- N. Anand, A. L. Fitzpatrick, and W. C. Haxton (2013), URL http://arxiv.org/abs/1308.6288

The Setup – Nuclear Shell Model

Nucleons in orbits & shells within nucleus, move in effective potential.

The Setup – Nuclear Shell Model

Nucleons in orbits & shells within nucleus, move in effective potential.

Angular momentum, parity and overall nuclear wave function dictated by the valence nucleons – those outside the core.

NuShellX

Used NuShellX (nuclear shell model program) to calculate FF values.

Program Inputs

- Pick valence (model) space
- Pick shell model interaction each fitted to different nuclear data, hence each might give different FF values

Research Completed

For the nuclei/isotopes

¹⁹F, ²³Na, ^{28,29,30}Si, ⁴⁰Ar, ^{70,72,73,74,76}Ge
¹²⁷I. ^{128,129,130,131,132,134,136}Xe

Impact of shell model interactions on nuclear responses to WIMP elastic scattering

Raghda Abdel Khaleq, Giorgio Busoni, Cedric Simenel, Andrew E. Stuchbery

Background: Nuclear recoil from scattering with weakly interacting massive particles (WIMPs) is a signature searched for in direct detection of dark matter. The underlying WIMP-nucleon interactions could be spin and/or orbital angular momentum

arXiv: 2311.15764

Nuclear Input in Form Factors

- Hold nuclear structure information
- Indicate scattering probability as function of momentum transfer q

Nuclear Input in Form Factors

- Hold nuclear structure information
- Indicate scattering probability as \bullet function of momentum transfer q

Integrated Form Factor (IFF)

$$\int_{0}^{100MeV} \frac{qdq}{2} F_X^{(N,N)}(q^2), \quad \text{in units of}$$
(MeV)²

$$(\text{MeV})^2$$

 $(MeV)^2$

128,129,130,131,132,134,136Weighted by isotopic abundance

 ${qdq\over 2}F_X^{(N,N)}(q^2)$

100 MeV

 $\Phi'' =$ spin-orbit term

 $\frac{qdq}{2}F_X^{(N,N)}(q^2)$

100 MeV

^{128,129,130,131,132,134,136}*Xe* Weighted by isotopic abundance

60% is a significant difference!

 $\int_{0}^{100 MeV} \frac{q dq}{2} F_X^{(N,N)}(q^2)$

 $\Sigma', \Sigma'' =$ spin-dependent terms

^{128,129,130,131,132,134,136}Xe Weighted by isotopic abundance

Difference even larger for these channels

Dark Matter formalism sensitive to aspects of nuclear structure

Application – LUX Experiment

Preliminary Results

- Plot bounds on high energy physics parameter Λ
- For operators that are spindependent

* Methods from: M. Cirelli, E. Del Nobile, and P. Panci, JCAP 10, 019 (2013), arXiv:1307.5955 [hep-ph].

Application – LUX Experiment

Preliminary Results

Log plots

- Plot bounds on high energy physics parameter Λ
- For operators that are spindependent
- Λ bounds differ by 20-30%
 - Cross-section $\sigma \propto rac{1}{\Lambda^4}$

* Methods from: M. Cirelli, E. Del Nobile, and P. Panci, JCAP 10, 019 (2013), arXiv:1307.5955 [hep-ph].

Important Takeaway

To constrain Dark Matter Candidates via Direct Detection

Must account for nuclear structure modelling & uncertainties!

Collaborations

Domestic:

Research Fellow Giorgio Busoni

Applying nuclear form
factors to various
direct detection
experiments/targets
to calculate scattering
rates

Research Fellow Jayden Newstead

Applying nuclear form factors to neutrino elastic scattering calculations

International:

Post Doctoral Fellow Madeleine Zurowski

- Applying nuclear form factors to SuperCDMS experimental targets, Ge & Si
- 3 month research trip funded by ANU Physics travel award in 2024 to University of Toronto

Important Takeaway

Nuclear Structure is Important!

.... Hire the nuclear physicists

Thank you for lísteníng!

Form Factors & OBDMEs

$$\begin{split} F_{X,Y}^{(N,N')}(q^2) &\equiv \frac{4\pi}{2J_i + 1} \\ &\sum_{J=0}^{2J_i} \langle J_i || X_J^{(N)} || J_i \rangle \langle J_i || Y_J^{(N')} || J_i \rangle \end{split}$$

One-body density matrix elements (OBDMEs)

$$\Psi_{|\alpha|,|\beta|}^{J;\tau} \equiv \frac{\langle J_i; T \stackrel{.}{\vdots} \left[a_{|\alpha|}^{\dagger} \otimes \tilde{a}_{|\beta|} \right]_{J;\tau} \stackrel{.}{\vdots} J_i; T \rangle}{\sqrt{(2J+1)(2\tau+1)}}$$

Integrated Form Factor Results

Integrated Form Factor Results

Integrated Form Factor Results

20% is a significant difference!

Application to Xenon Experiments

Preliminary Results

- Plot bounds on high energy physics parameter Λ
- For operators that are spindependent
- XENON100 experiment

The Setup – Nuclear Shell Model

Response $\times \left[\frac{4\pi}{2J_i+1}\right]^{-1}$	Leading	Long-wavelength	Response
	Multipole	Limit	Type
$\sum_{J=0.2}^{\infty} \langle J_i M_{JM} J_i angle ^2$	$M_{00}(qec{x_i})$	$rac{1}{\sqrt{4\pi}} 1(i)$	M_{JM} : Charge
$\sum_{J=1.3}^{\infty} \langle J_i \Sigma_{JM}'' J_i angle ^2$	$\Sigma_{1M}''(qec{x}_i)$	$rac{1}{2\sqrt{3\pi}}\sigma_{1M}(i)$	L_{JM}^5 : Axial Longitudinal
$\sum_{J=1,3,\dots}^{\infty} \langle J_i \Sigma'_{JM} J_i \rangle ^2$	$\Sigma'_{1M}(qec{x}_i)$	$rac{1}{\sqrt{6\pi}}\sigma_{1M}(i)$	T_{JM}^{el5} : Axial Transverse Electric
$\left \sum_{J=1,3,\ldots}^{\infty} \langle J_i rac{q}{m_N} \Delta_{JM} J_i\rangle ^2 ight $	$rac{q}{m_N}\Delta_{1M}(qec{x_i})$	$-rac{q}{2m_N\sqrt{6\pi}}\ell_{1M}(i)$	T_{JM}^{mag} : Transverse Magnetic
$\left \sum_{J=0,2,\dots}^{\infty} \langle J_i \frac{q}{m_N} \Phi_{JM}'' J_i\rangle ^2\right $	$rac{q}{m_N} \Phi_{00}^{\prime\prime}(qec{x}_i)$	$-rac{q}{3m_N\sqrt{4\pi}}ec{\sigma}(i)\cdotec{\ell}(i)$	$L_{JM}:$ Longitudinal
	$rac{q}{m_N} \Phi_{2M}''(qec{x}_i)$	$-rac{q}{m_N\sqrt{30\pi}}[x_i\otimes(ec{\sigma}(i) imesrac{1}{i}ec{ abla})_1]_{2M}$	
$\left \sum_{J=2,4,}^{\infty} \langle J_i rac{q}{m_N} ilde{\Phi}'_{JM} J_i angle ^2 ight $	$rac{q}{m_N} ilde{\Phi}'_{2M}(qec{x}_i)$	$-\frac{q}{m_N\sqrt{20\pi}}[x_i\otimes(\vec{\sigma}(i)\times\frac{1}{i}\vec{\nabla})_1]_{2M}$	$T_{JM}^{\rm el}$: Transverse Electric

Table 1. The response DM nuclear response functions, their leading order behavior, and the response type. The notation \otimes denotes a spherical tensor product, while \times is the conventional cross product.

The Setup – Nuclear Shell Model

- Work directly with EFT interaction Lagrangian picture, instead of starting with a very specific high energy model, integrating out unwanted DOF, and obtaining one specific version of

$$\mathcal{L}_{int} = \chi \mathcal{O}_{\chi} \chi \quad N \mathcal{O}_N N$$

The Setup – Nuclear Shell Model

<u>Constructing EFT non-relativistic interaction</u> <u>Hamiltonian (or Lagrangian)</u>

Consider symmetries \mathcal{H}_{int} has to obey:

Galilean invariance (shift in velocities) – need terms like

$$ec{v} \equiv ec{v}_{\chi, ext{in}} - ec{v}_{N, ext{in}},$$

$$\vec{q} = \vec{p}' - \vec{p} = \vec{k} - \vec{k}'.$$

Hermiticity-modify above terms

$$ec{v}^{\perp} \equiv ec{v} + rac{ec{q}}{2\mu_N}.$$

The Setup – Nuclear Shell Model

Galilean, Hermitian operators in \mathcal{H}_{int}

$$iec q, \quad ec v^ot, \quad ec S_\chi, \quad ec S_N.$$

- consider all combinations up to second order in \vec{q} , and at most quadratic in either \vec{S} or \vec{v} .

1. P-even, S_{χ} -independent

$$\mathcal{O}_1 = \mathbf{1}, \qquad \mathcal{O}_2 = (v^\perp)^2, \qquad \mathcal{O}_3 = i ec{S}_N \cdot (ec{q} imes ec{v}^\perp),$$

2. P-even, S_{χ} -dependent

 $\mathcal{O}_4 = ec{S}_\chi \cdot ec{S}_N, \qquad \mathcal{O}_5 = i ec{S}_\chi \cdot (ec{q} imes ec{v}^\perp), \qquad \mathcal{O}_6 = (ec{S}_\chi \cdot ec{q})(ec{S}_N \cdot ec{q}),$

3. P-odd, S_{χ} -independent

$$\mathcal{O}_7 = ec{S}_N \cdot ec{v}^\perp,$$

4. P-odd, S_{χ} -dependent

$$\mathcal{O}_8 = ec{S}_\chi \cdot ec{v}^ot, \qquad \mathcal{O}_9 = i ec{S}_\chi \cdot (ec{S}_N imes ec{q})$$

In addition, we also have T-violating operators:

5. P-odd, S_{χ} -independent:

$$\mathcal{O}_{10} = i ec{S}_N \cdot ec{q},$$

6. P-odd, S_{χ} -dependent

 $\mathcal{O}_{11}=iec{S}_{\chi}\cdotec{q}.$

Formalism

 $\begin{aligned} & \mathfrak{O}_1^q = \bar{\chi}\chi \; \bar{q}q \;, \\ & \mathfrak{O}_3^q = \bar{\chi}\chi \; \bar{q}\, i\gamma^5 q \;, \\ & \mathfrak{O}_5^q = \bar{\chi}\gamma^\mu\chi \; \bar{q}\gamma_\mu q \;, \\ & \mathfrak{O}_7^q = \bar{\chi}\gamma^\mu\chi \; \bar{q}\gamma_\mu\gamma^5 q \;, \\ & \mathfrak{O}_9^q = \bar{\chi}\; \sigma^{\mu\nu}\chi \; \bar{q}\; \sigma_{\mu\nu}q \;, \end{aligned}$

$$\begin{split} & \mathfrak{O}_2^q = \bar{\chi} \, i \gamma^5 \chi \; \bar{q} q \; , \\ & \mathfrak{O}_4^q = \bar{\chi} \, i \gamma^5 \chi \; \bar{q} \, i \gamma^5 q \; , \\ & \mathfrak{O}_6^q = \bar{\chi} \gamma^\mu \gamma^5 \chi \; \bar{q} \gamma_\mu q \; , \\ & \mathfrak{O}_8^q = \bar{\chi} \gamma^\mu \gamma^5 \chi \; \bar{q} \gamma_\mu \gamma^5 q \; , \\ & \mathfrak{O}_{10}^q = \bar{\chi} \, i \, \sigma^{\mu\nu} \gamma^5 \chi \; \bar{q} \, \sigma_{\mu\nu} q \; , \end{split}$$

$$\begin{array}{ll} \mathfrak{O}_{1}^{N} = \bar{\chi}\chi \ \bar{N}N \ , & \mathfrak{O}_{2}^{N} = \bar{\chi}\,i\gamma^{5}\chi \ \bar{N}N \ , \\ \mathfrak{O}_{3}^{N} = \bar{\chi}\chi \ \bar{N}\,i\gamma^{5}N \ , & \mathfrak{O}_{4}^{N} = \bar{\chi}\,i\gamma^{5}\chi \ \bar{N}\,i\gamma^{5}N \ , \\ \mathfrak{O}_{5}^{N} = \bar{\chi}\gamma^{\mu}\chi \ \bar{N}\gamma_{\mu}N \ , & \mathfrak{O}_{6}^{N} = \bar{\chi}\gamma^{\mu}\gamma^{5}\chi \ \bar{N}\gamma_{\mu}N \ , \\ \mathfrak{O}_{7}^{N} = \bar{\chi}\gamma^{\mu}\chi \ \bar{N}\gamma_{\mu}\gamma^{5}N \ , & \mathfrak{O}_{8}^{N} = \bar{\chi}\gamma^{\mu}\gamma^{5}\chi \ \bar{N}\gamma_{\mu}\gamma^{5}N \ , \\ \mathfrak{O}_{9}^{N} = \bar{\chi}\,\sigma^{\mu\nu}\chi \ \bar{N}\,\sigma_{\mu\nu}N \ , & \mathfrak{O}_{10}^{N} = \bar{\chi}\,i\,\sigma^{\mu\nu}\gamma^{5}\chi \ \bar{N}\,\sigma_{\mu\nu}N \ , \end{array}$$

$$\begin{split} c_{1,2}^{N} &= \sum_{q=u,d,s} c_{1,2}^{q} \frac{m_{N}}{m_{q}} f_{Tq}^{(N)} + \frac{2}{27} f_{TG}^{(N)} \left(\sum_{q=c,b,t} c_{1,2}^{q} \frac{m_{N}}{m_{q}} - c_{1,2}^{g} m_{N} \right) , \\ c_{3,4}^{N} &= \sum_{q=u,d,s} \frac{m_{N}}{m_{q}} \left[(c_{3,4}^{q} - C_{3,4}) + c_{3,4}^{g} \bar{m} \right] \Delta_{q}^{(N)} , \\ c_{5,6}^{p} &= 2 \, c_{5,6}^{u} + c_{5,6}^{d} , \quad c_{5,6}^{n} = c_{5,6}^{u} + 2 \, c_{5,6}^{d} , \\ c_{7,8}^{N} &= \sum_{q} c_{7,8}^{q} \Delta_{q}^{(N)} , \\ c_{9,10}^{N} &= \sum_{q} c_{9,10}^{q} \, \delta_{q}^{(N)} , \end{split}$$

Formalísm

$$\begin{split} \langle \mathfrak{O}_{1}^{N} \rangle &= \langle \mathfrak{O}_{5}^{N} \rangle = 4m_{\chi}m_{N}\mathfrak{O}_{1}^{\mathrm{NR}} ,\\ &\quad \langle \mathfrak{O}_{2}^{N} \rangle = -4m_{N}\mathfrak{O}_{11}^{\mathrm{NR}} ,\\ &\quad \langle \mathfrak{O}_{3}^{N} \rangle = 4m_{\chi}\mathfrak{O}_{10}^{\mathrm{NR}} ,\\ &\quad \langle \mathfrak{O}_{4}^{N} \rangle = 4\mathfrak{O}_{6}^{\mathrm{NR}} ,\\ &\quad \langle \mathfrak{O}_{4}^{N} \rangle = 8m_{\chi} \left(+m_{N}\mathfrak{O}_{8}^{\mathrm{NR}} + \mathfrak{O}_{9}^{\mathrm{NR}} \right) ,\\ &\quad \langle \mathfrak{O}_{6}^{N} \rangle = 8m_{\chi} \left(-m_{\chi}\mathfrak{O}_{7}^{\mathrm{NR}} + \mathfrak{O}_{9}^{\mathrm{NR}} \right) ,\\ &\quad \langle \mathfrak{O}_{7}^{N} \rangle = 8m_{N} \left(-m_{\chi}\mathfrak{O}_{7}^{\mathrm{NR}} + \mathfrak{O}_{9}^{\mathrm{NR}} \right) ,\\ &\quad \langle \mathfrak{O}_{8}^{N} \rangle = -\frac{1}{2} \langle \mathfrak{O}_{9}^{N} \rangle = -16 m_{\chi}m_{N}\mathfrak{O}_{4}^{\mathrm{NR}} ,\\ &\quad \langle \mathfrak{O}_{10}^{N} \rangle = 8 \left(m_{\chi}\mathfrak{O}_{11}^{\mathrm{NR}} - m_{N}\mathfrak{O}_{10}^{\mathrm{NR}} - 4m_{\chi}m_{N}\mathfrak{O}_{12}^{\mathrm{NR}} \right) \end{split}$$

$$\begin{array}{l} \mathfrak{O}_{1}^{\mathrm{NR}} = \mathbb{1} \ , \\ \mathfrak{O}_{3}^{\mathrm{NR}} = i \, \vec{s}_{N} \cdot \left(\vec{q} \times \vec{v}^{\perp} \right) \ , \quad \mathfrak{O}_{4}^{\mathrm{NR}} = \vec{s}_{\chi} \cdot \vec{s}_{N} \ , \\ \mathfrak{O}_{5}^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot \left(\vec{q} \times \vec{v}^{\perp} \right) \ , \quad \mathfrak{O}_{6}^{\mathrm{NR}} = \left(\vec{s}_{\chi} \cdot \vec{q} \right) \left(\vec{s}_{N} \cdot \vec{q} \right) \ , \\ \mathfrak{O}_{7}^{\mathrm{NR}} = \vec{s}_{N} \cdot \vec{v}^{\perp} \ , \qquad \mathfrak{O}_{8}^{\mathrm{NR}} = \vec{s}_{\chi} \cdot \vec{v}^{\perp} \ , \\ \mathfrak{O}_{9}^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot \left(\vec{s}_{N} \times \vec{q} \right) \ , \quad \mathfrak{O}_{10}^{\mathrm{NR}} = i \, \vec{s}_{N} \cdot \vec{q} \ , \\ \mathfrak{O}_{11}^{\mathrm{NR}} = i \, \vec{s}_{\chi} \cdot \vec{q} \ , \qquad \mathfrak{O}_{12}^{\mathrm{NR}} = \vec{v}^{\perp} \cdot \left(\vec{s}_{\chi} \times \vec{s}_{N} \right) \ , \end{array}$$

Líkelíhood Ratío Test Statístíc

$$\mathcal{L}(ec{N^{ ext{obs}}} \,|\, \lambda) = \prod_k rac{N_k (\lambda, m_\chi)^{N_k^{ ext{obs}}}}{N_k^{ ext{obs}}!} \, e^{-N_k (\lambda, m_\chi)}$$

$$ext{TS}(\lambda, m_\chi) = -2 \ln \left(\mathcal{L}(ec{N}^{ ext{obs}} \,|\, \lambda) / \mathcal{L}_{ ext{bkg}}
ight)$$

$$TS(\lambda, m_{\chi}) = -2\sum_{k} N_{k}^{obs} \ln\left(\frac{N_{k}^{th}(\lambda, m_{\chi}) + N_{k}^{bkg}}{N_{k}^{bkg}}\right) + 2\sum_{k} N_{k}^{th}(\lambda, m_{\chi})$$