

Advanced Metrology via Atom Counting

Michaela Froehlich Research School of Physics The Australian National University

1 MV VEGA accelerator, ANSTO

2023 CDM Annual Workshop - Collaboratively striving for success.

Cultural background

Austria - Australia

Determining radioactivity in detector components.

Why do we care?

Dark matter detector components & surrounding laboratory need to be constructed with minimal inherent (internal) radioactivity.

→ minimise interference with the expected signal from the detector should a dark matter particle be detected.

Determining radioactivity in detector components such as ⁴⁰K, ¹²⁹I, ²¹⁰Pb, ²³²Th, ²³⁸U, ...

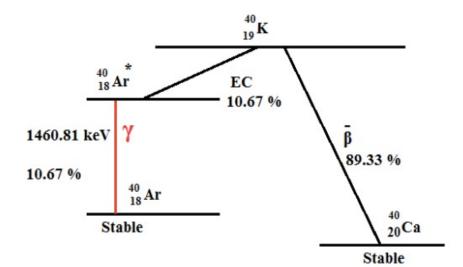
Ways to measure the radioactive content, e.g.,


- Inductively Coupled Mass Spectrometry (ICP-MS)
- Gamma Spectrometry
- Accelerator Mass Spectrometry (AMS)

Determining radioactivity in detector components such as ⁴⁰K, ¹²⁹I, ²¹⁰Pb, ²³²Th, ²³⁸U, ...

Ways to measure the radioactive content, e.g.,

- Inductively Coupled Mass Spectrometry (ICP-MS)
- Gamma Spectrometry
- Accelerator Mass Spectrometry (AMS)



Potassium-40, half-life = 1,250 Myrs

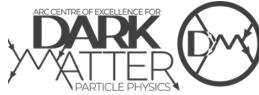
Primordial radionuclide.

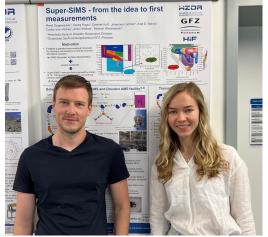
 40 K: 0.012%, 39 K: 93.3% $\rightarrow {}^{40}$ K/ 39 K = 1.29x10-4.

Decay via EC to ⁴⁰Ar (1460 keV gamma,

low-energy Auger electrons) and via beta decay to ⁴⁰Ca.

Measurement capability: ICP-MS.




Potassium-40, half-life = 1,250 Myrs

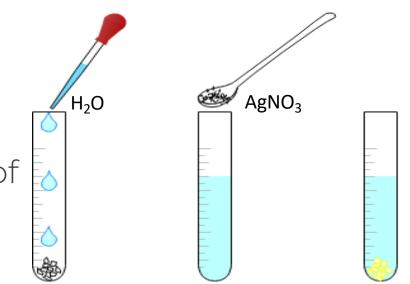
BUT: ICP-MS: background from molecules & ^{38,40}Ar from the plasma, dilution.

SOLUTION: SIMS: solid crystals, small samples, no dilution, combine AMS with SIMS \rightarrow Super-SIMS

Super-SIMS to characterize ultra-low ⁴⁰K concentrations in Nal crystals (Centre funding: Assoc. Investigator Dr D. Koll, HZDR & Dr Z. Slavkovská, ANU).



Determining radioactivity in detector components such as ⁴⁰K, ¹²⁹I, ²¹⁰Pb, ²³²Th, ²³⁸U, ...


Ways to measure the radioactive content, e.g.,

- Inductively Coupled Mass Spectrometry (ICP-MS)
- Gamma Spectrometry
- Accelerator Mass Spectrometry (AMS)

lodine-129, half-life = 15.7 Myrs

- ¹²⁹I routine AMS isotope: isotope ratio ¹²⁹I/¹²⁷I No isobaric interference.
- AMS background at ANU: ¹²⁹I/¹²⁷I <10⁻¹⁴.
- ¹²⁹I/NaI ¹²⁹I/¹²⁷I isotope ratio independent of
- sample mass. Only need a few mg!

Agl

 $AgI + Ag \rightarrow AMS target$

lodine-129, half-life = 15.7 Myr

¹²⁹I routine AMS isotope: isotope ratio ¹²⁹I/¹²⁷I

No isobaric interference.

AMS background at ANU: $1291/1271 < 10^{-14}$.

¹²⁹I/NaI ¹²⁹I/¹²⁷I isotope ratio independent of

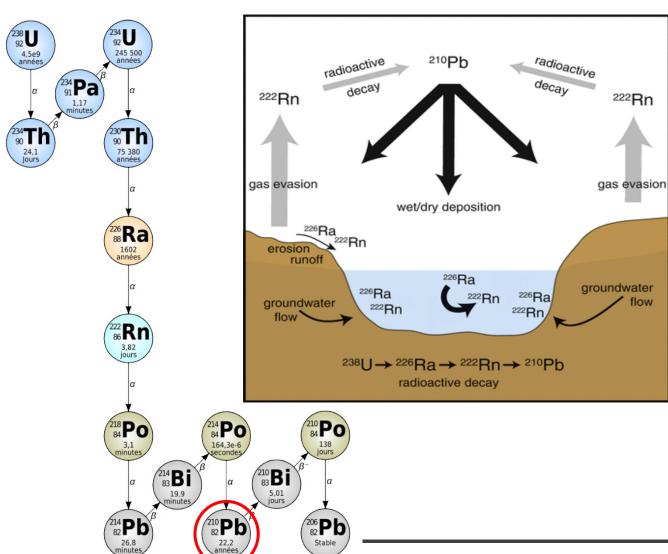
sample mass. Only need a few mg!

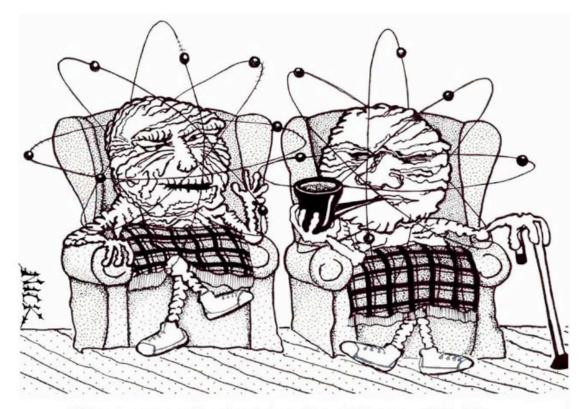
Compare Bernabei et al., 2008 (DAMA/LIBRA): ¹²⁹I/I = (1.7 ± 0.1)×10⁻¹³.

Convert to specific activity $\rightarrow 1 \text{ mBq/kg}$.

14UD tandem accelerator, ANU

lodidecompound	¹²⁹ l/l [×10 ⁻¹³]
Nal (Analytical Grade)	$\textbf{1.5}\pm\textbf{0.1}$
Nal (Growth Grade)	$\textbf{1.9}\pm\textbf{0.1}$
Nal (Astro Grade)	1.6 ±0.1


Determining radioactivity in detector components such as ⁴⁰K, ¹²⁹I, ²¹⁰Pb, ²³²Th, ²³⁸U, ...


Ways to measure the radioactive content, e.g.,

- Inductively Coupled Mass Spectrometry (ICP-MS)
- Gamma Spectrometry
- Accelerator Mass Spectrometry (AMS)

Lead-210, half-life = 22.2 yrs

"When I was young I used to feel so alive and dangerous! Would you believe I started life as a uranium-238? Then one day I accidentally ejected an alpha particle. Now look at me—a spent old atom of lead-206. It seems that all my life since then has been nothing but decay, decay, decay..."

Lead-210 screening via atom counting

Advantages of AMS:

Low ratios of $10^{-10} - 10^{-17}$. Low number of atoms: $10^5 - 10^8$ atoms.

Progress over the last 20 years:

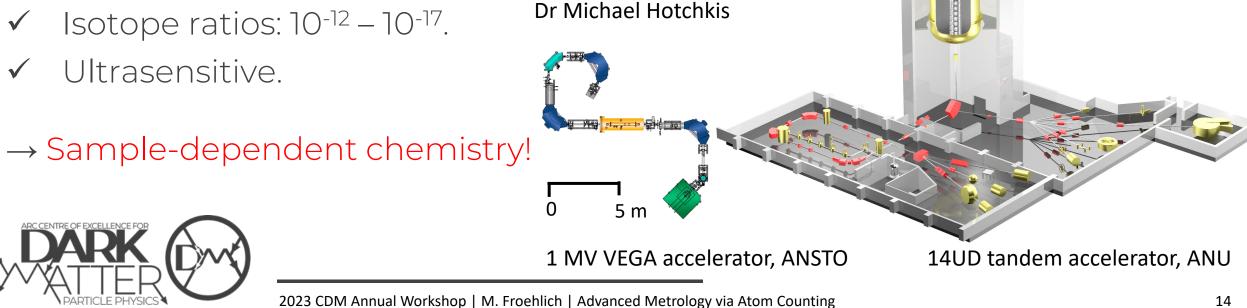
University of Vienna University of Ottawa

 210 Pb/Pb = 5.7×10⁻¹¹ (3MV accelerator, 2001). 210 Pb/Pb = 2.5×10⁻¹² (3MV accelerator, 2015).

"Lead is among one of the most frustrating

/ by Roy Middleton in A Negative-Ion Cookbook

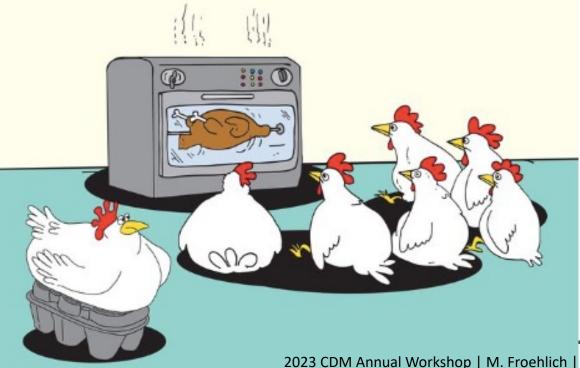
elements that we have encountered."


Nal: Expected ²¹⁰Pb < 0.03 mBq/kg \rightarrow ²¹⁰Pb/Pb = < 7.0×10⁻¹⁵.

Antonello et al., Astroparticle Physics, 2019; 106:1-9.

Accelerator Mass Spectrometry (AMS)

- The art of identifying and counting rare atoms one by one.
- Main benefits of AMS:
- No isobaric background.
- Isotope ratios: $10^{-12} 10^{-17}$.

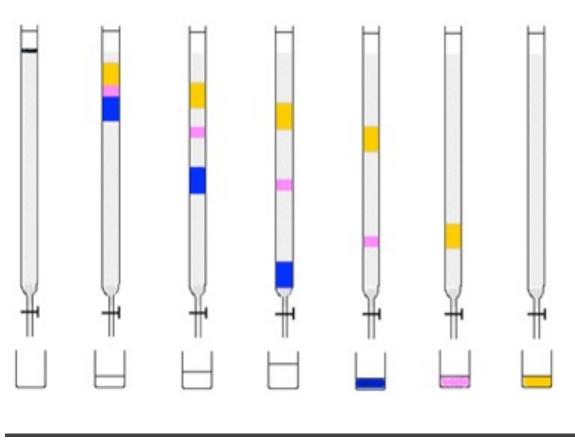


Dissolving Nal

Dissolving Nal

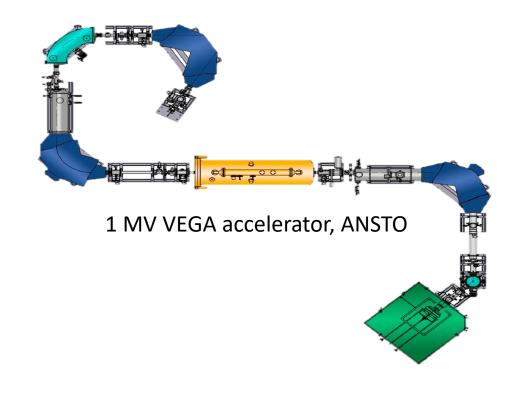
HORROR MOVIE

Dissolving Nal


- Dissolving Nal + adding a Pb carrier. Any Pb compound in our lab. Enriched Pb.
- 18th century church roof piece. Kanazawa Castle (Japan). Pb from Canadian AMS group. LNGS.
- Pb material from underground

labs in Germany.

Pb compound	Pb compound
Pb (metal powder)	Japan
PbO	Hampton Court Palace roof
PbO ₂	LANL stock & Chicago stock
Pb ₃ O ₄	U. Chicago Spanish lead
PbF ₂	PNNL ancient lead
ICP-MS Pb	LNGS material
Pb-204	Munich
Pb-206	Brick (Felsenkeller)
Pb_20001 (roof)	



Dissolving Nal + adding a Pb carrier + column chromatography.

Dissolving NaI + adding a Pb carrier + column chromatography + AMS.

Dissolving Nal + adding a Pb carrier + column chromatography + AMS. EASY!!

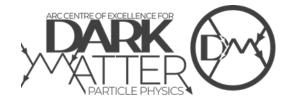
Nal is highly soluble in H_2O and HCI.

Dissolving Nal + adding a Pb carrier + column chromatography + AMS.

Need to find a suitable Pb carrier, i.e., 210 Pb/Pb = < 7.0×10⁻¹⁵.

Pb compound	²¹⁰ Pb/Pb	Pb compound	²¹⁰ Pb/Pb
Pb (metal powder)	-	ICP-MS Pb	9.6×10 ⁻¹⁴
PbO	1.2×10 ⁻¹⁴	Brick	-
PbO ₂	1.1×10 ⁻¹⁴	LNGS	-
Pb ₃ O ₄	4.8×10 ⁻¹⁴	U. Chicago Spanish lead	9.1×10 ⁻¹⁵
PbF ₂	3.9×10 ⁻¹⁴	PNNL ancient lead	2.7×10 ⁻¹⁵
Pb_20001 (roof)	7.3×10 ⁻¹⁵	Hampton Court Palace roof	2.5×10 ⁻¹⁵
²⁰⁴ Pb	-	LANL stock	1.7×10 ⁻¹⁵
²⁰⁶ Pb	9.1×10 ⁻¹⁵	U. Chicago stock	2.3×10 ⁻¹⁴

Dissolving Nal + adding a Pb carrier + column chromatography + AMS.


Need to find a suitable Pb carrier, i.e., 210 Pb/Pb = < 7.0×10⁻¹⁵.

Pb compound	²¹⁰ Pb/Pb	Pb compound	²¹⁰ Pb/Pb
Pb (metal powder)	-	ICP-MS Pb	9.6×10 ⁻¹⁴
PbO	1.2×10 ⁻¹⁴	Brick	-
PbO ₂	1.1×10 ⁻¹⁴	LNGS	-
Pb ₃ O ₄	4.8×10 ⁻¹⁴	U. Chicago Spanish lead	9.1×10 ⁻¹⁵
PbF ₂	3.9×10 ⁻¹⁴	PNNL ancient lead	2.7×10 ⁻¹⁵
Pb_20001 (roof)	7.3×10 ⁻¹⁵	Hampton Court Palace roof	2.5×10 ⁻¹⁵
²⁰⁴ Pb	-	LANL stock	1.7×10 ⁻¹⁵
²⁰⁶ Pb	9.1×10 ⁻¹⁵	U. Chicago stock	2.3×10 ⁻¹⁴

Dissolving NaI + adding a Pb carrier + column chromatography + AMS. Need to find a suitable Pb carrier, i.e., 210 Pb/Pb = < 7.0×10⁻¹⁵.

Pb compound	²¹⁰ Pb/Pb [×10 ⁻¹⁵]
LANL stock	2.08 ± 0.42
Hampton Court Palace roof	1.41 ± 0.28
PNNL ancient lead	0.15 ± 0.03
LNGS	0.24 ± 0.05
Brick	1.13 ± 0.23
Munich	0.26 ± 0.05
Pb metal powder	27.5 ± 0.55
Japan	1.17 ± 0.23

Dissolving NaI + adding a Pb carrier + column chromatography + AMS. Need to find a suitable Pb carrier, i.e., 210 Pb/Pb = < 7.0×10⁻¹⁵.

Pb compound	²¹⁰ Pb/Pb [×10 ⁻¹⁵]
LANL stock	2.08 ± 0.42
Hampton Court Palace roof	$\textbf{1.41} \pm \textbf{0.28}$
PNNL ancient lead	$\textbf{0.15}\pm\textbf{0.03}$
LNGS	0.24 ± 0.05
Brick	1.13 ± 0.23
Munich	0.26 ± 0.05
Pb metal powder	27.5 ± 0.55
Japan	1.17 ± 0.23

This brings us back to ...

Progress over the last 20 years:

University of Vienna University of Ottawa ANSTO

 210 Pb/Pb = 5.7×10⁻¹¹ (3MV accelerator, 2001). 210 Pb/Pb = 2.5×10⁻¹² (3MV accelerator, 2015). 210 Pb/Pb = 1.5×10⁻¹⁶ (1MV accelerator, 2023)!!!

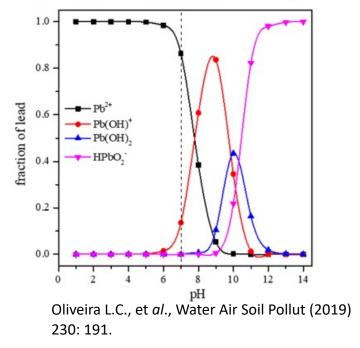
Dissolving NaI + adding a Pb carrier + column chromatography + AMS. 1 kg NaI (4× 250 g); tests with analytical grade NaI

Option 1: dissolve Nal

pre-concentration via Fe/Pb precipitation column chromatography (AE resin) \rightarrow Pb

Option 2: dissolve Nal

column chromatography (Sr resin) → Pb



Chemistry Challenge

Option 1 – Advantage: Pre-concentration Less chemicals

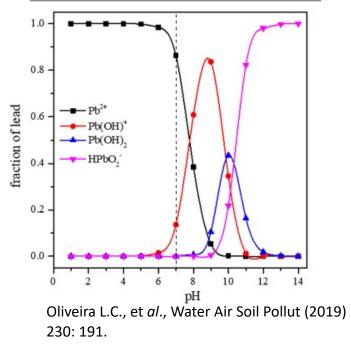
Disadvantage: pH dependant

logβ
6.2
10.3
14.0

Option 2 – Advantage: Directly on the column Sr resin \rightarrow higher Pb retention Disadvantage: 85% iodide (I⁻)

Break-through & bleeding

Chemistry Challenge


Option 1 – Advantage:Disadvantage:Pre-concentrationpH dependantLess chemicals097655Cstillin Progress

 System
 log β

 Pb²⁺ + OH⁻ = Pb(OH)⁺
 6.2

 Pb²⁺ + 2OH⁻ = Pb(OH)₂
 10.3

 Pb²⁺ + 3OH⁻ = HPbO₂⁻ + H₂O
 14.0

Option 2 – Advantage:

Directly on the column

Sr resin \rightarrow higher Pb retention

ARCCENTRE OF EXCELLENCE FOR DARTICLE PHYSICS Disadvantage: 85% iodide (I⁻)

Break-through & bleeding

T 11 1 D ((1' 1' ((

TD1 +

Dissolving Nal + adding a Pb carrier + column chromatography + AMS.

Table 1. Poten	ntial interferences during Pb isotope measurements					
Pb isotope	Mass-to-charge interferences at injection magnetic	Mass-to-charge interference(s) in final detector				
²⁰⁴ Pb ^a ²⁰⁵ Pb ^b ²⁰⁸ Pb ^a ²¹⁰ Pb ^b	$^{68}Zn_3^{57}Fe^{-}_{205}TlF_3^{-}_{70}Zn^{140}Ce^{19}F_3^{-}_{3}$	Coincidence counting of 70 Zn ⁺¹ and 140 Ce ⁺²	Table 1 Ratios of PbXY ⁻ compounds mixed with fluorinating agents or Ag and the cum measured from the respective mixtures.			and the currents
^a Collected in a ^b Collected in a	a Faraday cup. a gas ionization chamber.		Target composition	Ratio by weight	Average ²⁰⁸ Pb molecular anion current (nA)	Molecular anions
A. Sookdeo et <i>al.</i> Rapid Commun Mass Spectrom 30 (2015) 867.		$PbF_2 + AgF_2$ $PbF_2 + AgF_2 + CsF$ $PbO + AgF_2$	1:1 9:6:10 3:5	75 175 63	²⁰⁸ PbF ₃ ²⁰⁸ PbF ₃ ²⁰⁸ PbOF ⁻	

 $PbO + PbF_2$

 $PbO + PbF_2 + AgF_2$

 $Pb(SCN)_2 + Ag$

 $Pb(NO_2)_2 + Ag$

 $PbSO_4 + Ag$

 $PbCO_3 + Ag$

 $Pb(SCN)_2 + AgF_2$

 $PbO + PbF_2 + AgF_2 + CsF$

3:5

4:5:3

5:5:4:4

2:3

7:6

5:2

4:5

5:8

A. Sookdeo et al. NIMB 361 (2015) 450.

23

53

27.5

120

145

25

0.6

60

0

4

12.5

²⁰⁸PbF₃, ²⁰⁸PbOF⁻

²⁰⁸PbF₃, ²⁰⁸PbOF⁻

²⁰⁸PbF₃,

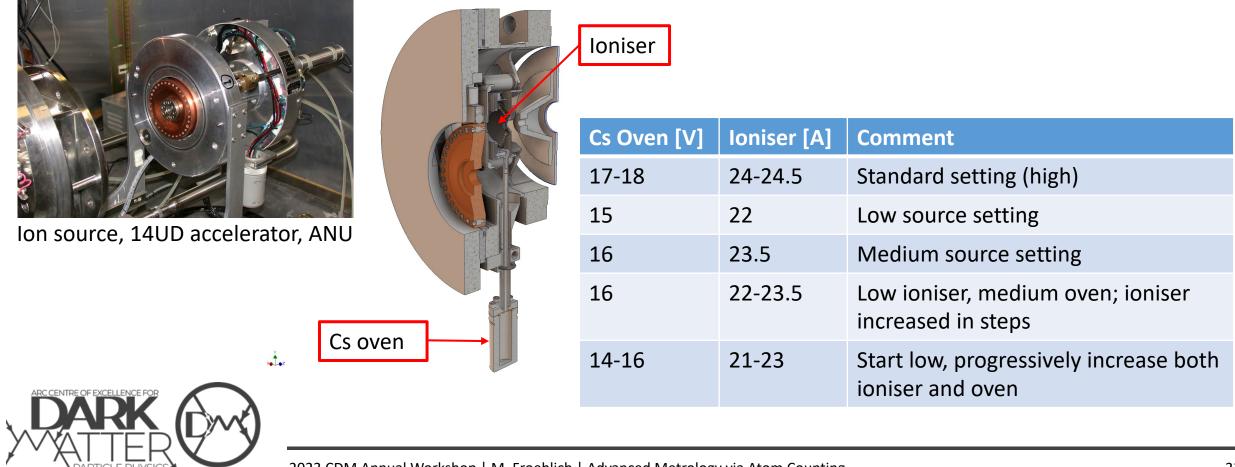
²⁰⁸PbOF⁻

 $^{208}PbF_{3}$

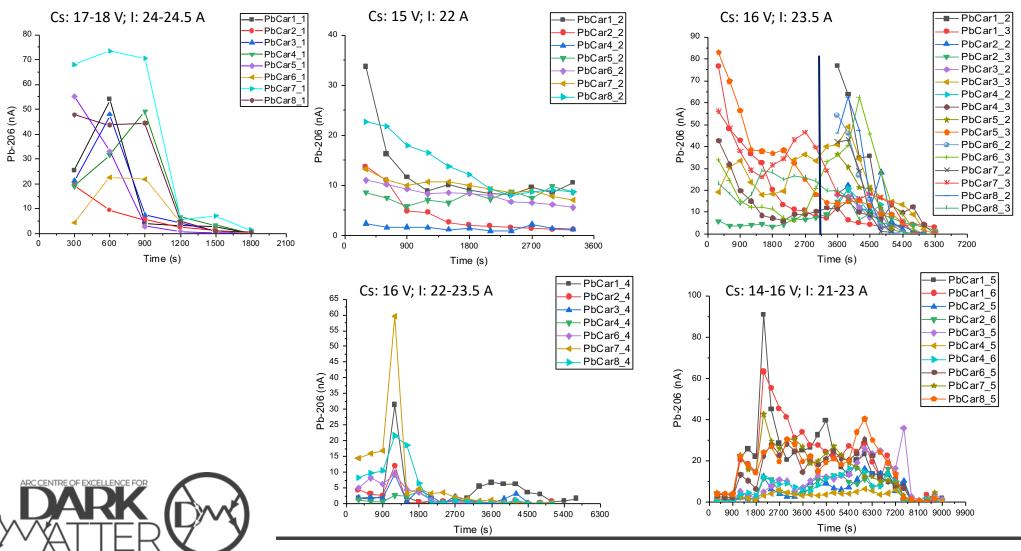

²⁰⁸PbS⁻ ²⁰⁸PbO₂

²⁰⁸PbO₂ &

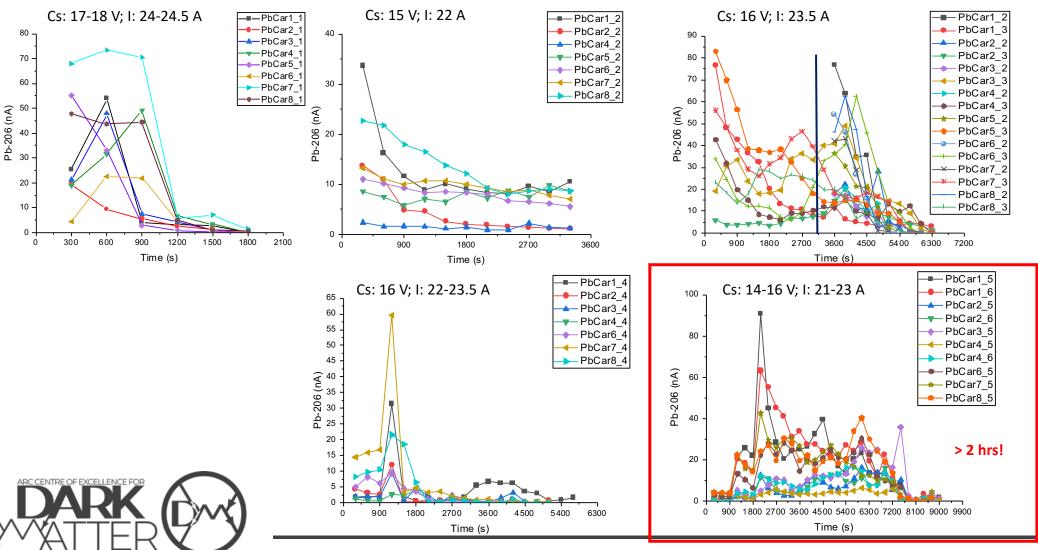
²⁰⁸Pb(SCN)₂


AMS challenge

Samples do not last, i.e., beam drops after 15-30 min.



AMS challenge


Samples do not last, i.e., beam drops after 15-30 min.

Results – different ioniser settings

Results – different ioniser settings

Summary

Clean materials are required to construct and operate many lowbackground physics experiments \rightarrow identify background (⁴⁰K, ¹²⁹I, ²¹⁰Pb, ...).

Some are easier than others:

- $^{40}K \rightarrow Super-SIMS?$
- \rightarrow done by AMS.
- ²¹⁰Pb \rightarrow optimise chemical extraction procedure for AMS.

This could not have been done without a great team!

