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The R2-parameter
Fortunately, other globular cluster parameters exist which can set complementary constraints on 

A particularly strong candidate for this is the R2-parameter - the ratio of AGB to HB stars

Historically used to constrain mixing across convective boundaries 
during the HB

Dominguez, et al., 
MNRAS, 456 

(1999) L1

Constantino, et al., 
MNRAS, 456 
(2016) 3866
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to the original target
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Dark photon stellar cooling constraints
Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter

However, these limits are static, i.e. they have been derived by:

The reliability of static limits can only be guaranteed if dark photons affect stellar evolution in a similar fashion 
to the original target

This is not the case for transverse dark photons: production in star localised to region with plasma frequency 
equal to the dark photon mass - resonant production region (RPR) 

Convert existing bounds on 
axions/neutrinos to upper limits 

on novel energy-loss

1 Demand that DP energy-loss 
be less than this when 

integrated/averaged over a 
static stellar profile

2

Goal: To use dynamic and self-consistent stellar evolution simulations to develop 
new dark photon constraints from R and R2  (and RGB-tip)
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R2 is particularly well-placed to constrain this

We found…
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Selected results

7
Advancing stellar constraints on WISPs

Supplement with updated limits from R and the 
RGB-tip luminosity

Yields our combined constraint

Could not extend bound below 400 eV in mass due 
to complications with simulating main sequence 

evolution

Subject of future work…



WISPers from the stars
Stellar evolution has been a rich source of constraint on weakly interacting slim particles for 

decades

Despite this, improving observational and theoretical capabilities make their advancement 
possible to this day

Using the stellar evolution code MESA and the R2-parameter, we set a new limit on the 
axion-photon coupling which is both more robust and more restrictive than its predecessor

We developed new limits on dark photons from R, R2  and the RGB-tip by including transverse 
dark photon production in stars (for the first time)

Thank you for your attention!
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R-parameter constraint

Advancing globular cluster constraints on the axion-photon coupling

Historically, the most restrictive stellar cooling bound on the axion-photon 
coupling comes from the R-parameter of globular clusters

Globular cluster HBs and RGBs populated with stars of approximately the same 
initial mass

Observed limits on R constrain the relative lifetimes of the evolutionary phases

Axion photoproduction proceeds via the Primakoff process

For               , energy-loss is efficient in HB stars but not during the RGB phase

Increasing       reduces R - for high enough values it will contradict observation

Primakoff production

Raffelt & Dearborn., Phys. 
Rev. D 36 (1987) 2211

Ayala, et al., Phys. Rev. Lett. 
113 (2014) 191302

This all sounds fine… but there’s an issue!
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Advancing globular cluster constraints on the axion-photon coupling

Formally, the convective boundary (CB) is the location at which acceleration 
(but not momentum) of convective elements falls to zero

Convective elements penetrate beyond the CB, mixing the products of 
helium-burning (C & O) across the boundary - convective overshoot

Carbon and oxygen are more opaque than helium - mixing leads to local 
increase in         and growth of the convective core

Growth of core results in influx of helium into it - lowers         profile

Further outward movement of CB results in splitting of the core 

Convective core 
(C&O enriched)

Helium-rich 
zone?

Repeated episodes of growth & splitting cause instability of CB boundary - source of 
stochastic & theoretical uncertainty ignored in previous bounds

Aside: The HB convective core boundary (convective overshoot)
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Stellar dark photon production

Resonant production when:  ……………… Resonant production when:  …   ……..………

Atypical

Off centre

Free to move 
throughout evolution

Star can acquire RPR 
during evolution

Transverse energy loss 
only sizeable in region 

which satisfies resonance

Defines resonant 
production region (RPR)

Dominates over L if 
present


