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The R-parameter constraint

The leading stellar constraint on the axion-photon coupling
comes from the R-parameter of globular clusters pecreases with

R _ Npgg ~ THB/ increasing Garyn
NrGB = ™RGB—_ Independent of

Energy-loss to axion photoproduction is efficient in HB cores,
but not in RGB stars

For large enough values of g4+, R will fall outside observed
range

Issuel

Theoretical predictions for HB duration suffer from stochastic
and systematic uncertainty

Caused by mixing across convective boundaries in HB stars

HB simulations are not computationally stable

Calculate R as a function of axion-photon coupling 20
times, varying temporal and spatial resolution
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B fov =0.01
1.6 i
_________ Free parameter
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I iy 00 . i
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Varying free parameter(s) shifts implied limit

Advancing stellar constraints on WISPs




The R -parameter
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Fortunately, other globular cluster parameters exist which can set complementary constraints on g,
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The R -parameter

THE UNIVERSITY OF
MELBOURNE

Fortunately, other globular cluster parameters exist which can set complementary constraints on g,

A particularly strong candidate for this is the R -parameter - the ratio of AGB to HB stars

NacB  TAcB
R2 = ~

Nyp THB
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The R -parameter

THE UNIV Y OF
MELBOURNE

Fortunately, other globular cluster parameters exist which can set complementary constraints on g,

A particularly strong candidate for this is the R -parameter - the ratio of AGB to HB stars

~ NagB _ TAGB

Ry = =
Nup THB
.. Domi ,etal,
j AGB He-B shell is hotter and less dense than HB core = more sensitive (;\r/fnﬁgzzz 4656(Gl
to axion energy-loss than HB (¢, ~ 77/p) (1999) L1
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The R -parameter

Fortunately, other globular cluster parameters exist which can set complementary constraints on g,

A particularly strong candidate for this is the R -parameter - the ratio of AGB to HB stars

NacB  TAcB
Ry =

Nup THB
. .. Domi ,etal,
j AGB He-B shell is hotter and less dense than HB core = more sensitive (;\r/fnﬁgz;z 4656&
to axion energy-loss than HB (¢, ~ 77/p) (1999) L1
Hi icall d . .. ve b dari Constantino, et al.,
Qi 1sForlca y used to constrain mixing across convective boundaries MNRAS, 456
during the HB (2016) 3866
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R versus Rz
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R versus Rz
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R versus Rz
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R versus Rz
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R versus Rz
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Rversus R,

HE UNIVERSITY OF
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Original idea: leverage R and R, against
one another to compute a total limit which
marginalises over the uncertainty
associated with convective boundaries
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Original idea: leverage R and R, against
one another to compute a total limit which
marginalises over the uncertainty
associated with convective boundaries

Reality: R, will always give you the
strongest limit
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Rversus R,

Original idea: leverage R and R, against
one another to compute a total limit which 110
marginalises over the uncertainty ]
associated with convective boundaries

Horizontal Branch (R)

Reality: R, will always give you the

1011 4
strongest limit .

New limit of g9 < 0,4¥hich is both I
stronger and more robust than its 108 107 106 105
predecessor
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Globular cluster constraints on
dark photons

arXiv: 2306.13335




Dark photons 3

HE UNIVERSITY OF
MELBOURNE

Dark photons are gauge bosons associated with new dark U(1) gauge groups
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Dark photons
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Dark photons are gauge bosons associated with new dark U(1) gauge groups

Interact with the SM via kinetic mixing with the visible photon

2
[ - _iFMVFW_iVWVWJF%VMVu_%FMVVMV]
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Dark photons

Dark photons are gauge bosons associated with new dark U(1) gauge groups

Interact with the SM via kinetic mixing with the visible photon

2
[ - _iFMVFW_iVWVWJF%VMVu_%FMVVMV]

Can constitute dark matter, or act as a mediator between the dark and visible sectors
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Dark photons

THE UNIVERSITY OF
MELBOURNE

Dark photons are gauge bosons associated with new dark U(1) gauge groups

Interact with the SM via kinetic mixing with the visible photon

m2
[ - _iFMVFW_iVWVWJF%VMV”_%FWVMV]

Can constitute dark matter, or act as a mediator between the dark and visible sectors

Their parameter space is defined by their mass
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Dark photons

HE UNIVERSITY OF
MELBOURNE

Dark photons are gauge bosons associated with new dark U(1) gauge groups

Interact with the SM via kinetic mixing with the visible photon

m2
[ - _iFMVFW_iVWVWJF%VMVu_%FMVVMV]

Can constitute dark matter, or act as a mediator between the dark and visible sectors

Their parameter space is defined by their mass and kinetic mixing parameter

Advancing stellar constraints on WISPs



Dark photon stellar cooling constraints X,

THE UNIVERSITY OF
MELBOURNE

Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter
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Dark photon stellar cooling constraints 3

HE UNIVERSITY OF
MELBOURNE

Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter

However, these limits are static, i.e. they have been derived by:
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Dark photon stellar cooling constraints

THE RSITY OF
MELBOURNE

Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter

However, these limits are static, i.e. they have been derived by:

axions/neutrinos to upper limits

Convert existing bounds on
{ on novel energy-loss

Advancing stellar constraints on WISPs



Dark photon stellar cooling constraints
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Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter

However, these limits are static, i.e. they have been derived by:

2 Demand that DP energy-loss

t existing bound .
Conver EXISLINE DOUIAS o1l be less than this when
axions/neutrinos to upper limits :
integrated/averaged over a

on novel energy-loss static stellar profile
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Dark photon stellar cooling constraints

Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter

However, these limits are static, i.e. they have been derived by:

2 Demand that DP energy-loss

t existing bound .
Conver EXISLINE DOUIAS o1l be less than this when
axions/neutrinos to upper limits :
integrated/averaged over a

on novel energy-loss static stellar profile

The reliability of static limits can only be guaranteed if dark photons affect stellar evolution in a similar fashion
to the original target
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Dark photon stellar cooling constraints

Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter

However, these limits are static, i.e. they have been derived by:

2 Demand that DP energy-loss

t existing bound .
Conver EXISLINE DOUIAS o1l be less than this when
axions/neutrinos to upper limits .

integrated/averaged over a

on novel energy-loss static stellar profile

The reliability of static limits can only be guaranteed if dark photons affect stellar evolution in a similar fashion
to the original target

This is not the case for transverse dark photons: production in star localised to region with plasma frequency
equal to the dark photon mass - resonant production region (RPR)

*transverse
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Dark photon stellar cooling constraints

MELBOURNE

Stellar limits on dark photons exist, e.g. those from the Sun, RGB stars, the R-parameter

However, these limits are static, i.e. they have been derived by:

- 2 Demand that DP energy-loss
{ Convert existing bounds on { be less than this when

axions/neutrinos to upper limits :
/ PP integrated/averaged over a

on novel energy-loss static stellar profile

The reliability of static limits can only be guaranteed if dark photons affect stellar evolution in a similar fashion
to the original target

This is not the case for transverse dark photons: production in star localised to region with plasma frequency
equal to the dark photon mass - resonant production region (RPR)

Goal: To use dynamic and self-consistent stellar evolution simulations to develop
new dark photon constraints from R and R, (and RGB-tip)
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Selected results

THE UNIVERSITY OF
MELBOURNE

We found...
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Selected results

Strong interplay between
novel energy-loss and
stellar convective structure
when the RPR is in the
stellar core near the end of
HB evolution

We found...
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Selected results

THE UN

F
MELBOURNE

R, is particularly well-placed to constrain this

We found...

Dark photon mass mpp [eV]

10_13 = T T T T 171 T T 1T T 17T T T T LI L
) E Solar ) > HB (R) RGB-Tip
Strong interplay between F(APR13) (GIRR, 15) (APPR, 20)
novel energy-loss and I [
stellar convective structure ol ,»" i
when the RPR is in the I :
stellar core near the end of g
. o -
HB evolution E=
H 1070 E
A
—16 L1l Ll L
10 le x@ x()b‘ x@
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Selected results

THE RSITY OF
MELBOURNE

Supplement with updated limits from R and the
RGB-tip luminosity

10-13 F T T L TTT T T T T T T 17T T T T T
[ Solar HB (R) RGB-Tip
K (APP, 13) (GIRR, 15) (APPR, 20)
}<
bo10- 141 =
< c g
=
X
B
9
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-
o =13
£k .
N
10—16 1 | [ N B | I | [ N B | 1 | [ R |
3 1@ 10 A

Dark photon mass mpp [eV]
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Selected results

THE OF
MELBOURNE

Supplement with updated limits from R and the
RGB-tip luminosity

10718
. 3 ° >< /'//
Yields our combined constraint 201014 5
z
3 /
5 /
5 107PE E
™ F ——- RGB-Tip (this work)
[ o R (this work)
| —-- Ry (this work)
[ Combined Limit
10—16 1 | 1 (R | 1 | 1 [ | 1 | | [ |
& & W &

Dark photon mass mpp [eV]
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Selected results

MELBOURNE

Supplement with updated limits from R and the
RGB-tip luminosity

10713

. Ll L ><
Yields our combined constraint 5010 -
9
Could not extend bound below 400 eV in mass due & ;| 4 |
M I ——- RGB-Tip (this work)

to complications with simulating main sequence
0 [ eeeee R (this work)
evolution [ — - Ry (this work)

[ Combined Limit

10—16 (R | 1 | [ N B | 1 | [ R |
3 1@ 10 A

Dark photon mass mpp [eV]
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Selected results

THE UNIVERSITY OF
MELBOURNE

Supplement with updated limits from R and the
RGB-tip luminosity

10713

. Ll L ><
Yields our combined constraint 201014 :
A )
9
Could not extend bound below 400 eV in mass due & ;| 4 |
M I ——- RGB-Tip (this work)

to complications with simulating main sequence

evolution e
| —-- Ry (this work)
[ Combined Limit
10—16 1 | 1 (R | 1 | 1 [ | 1 | | [ |
3 1@ 10 A

g Dark photon mass mpp [eV]
Subject of future work... P DP
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V!!SPers from the stars

Stellar evolution has been a rich source of constraint on weakly interacting slim particles for
decades

Despite this, improving observational and theoretical capabilities make their advancement
possible to this day

Using the stellar evolution code MESA and the R -parameter, we set a new limit on the
axion-photon coupling which is both more robust and more restrictive than its predecessor

We developed new limits on dark photons from R, R, and the RGB-tip by including transverse
dark photon production in stars (for the first time)

Thank you for your attention!
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R-parameter constraint

Historically, the most restrictive stellar cooling bound on the axion-photon
coupling comes from the R-parameter of globular clusters VNV V.Y,V S i

R = Nup ~ B 14
— = ~
RGB TRGB

Globular cluster HBs and RGBs populated with stars of approximately the same
initial mass M; ~ 0.8M, k €p =

Observed limits on R constrain the relative lifetimes of the evolutionary phases 10710

Horizontal Branch (R)

Axion photoproduction proceeds via the Primakoff process V

For g1y ~ 1, energy-loss is efficient in HB stars but not during the RGB phase

10~11 4

Increasing g1 reduces R - for high enough values it will contradict observation

ggfy'y [Gev_l]

Raffelt & Dearborn., Phys. Ayala, et al., Phys. Rev. Lett.
Rev. D 36 (1987) 2211 113 (2014) 191302

10—12

107 1077 107 107> 107* 1073 1072 101! 100 10!
This all sounds fine... but there’s an issue! Mg [eV]




Aside: The HB convective core boundary (convective overshoot)

Formally, the convective boundary (CB) is the location at which acceleration
(but not momentum) of convective elements falls to zero

Convective elements penetrate beyond the CB, mixing the products of
helium-burning (C & O) across the boundary - convective overshoot

Carbon and oxygen are more opaque than helium - mixing leads to local
increase in V,,q and growth of the convective core

Convective core 5 Helium-rich
(C&O enriched) ’ zone

Growth of core results in influx of helium into it - lowers V,q profile

Further outward movement of CB results in splitting of the core

Repeated episodes of growth & splitting cause instability of CB boundary - source of
stochastic & theoretical uncertainty ignored in previous bounds

K @) Advancing globular cluster constraints on the axion-photon coupling



Stellar dark photon production

MELBOURNE

2,2 277 20,4 v
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Resonant production when: w = w, Resonant production when: w, =~ mpp
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Atvoical 1 X Transverse energy loss
Atypical : only sizeable in region
i — i : .
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