ORGAN Phase 1B: Results and Future Plans

Aaron Quiskamp

Australian Research Council Centre of Excellence for Engineered Quantum Systems

Axions

• Axions can solve two very big problems in physics!

Axions

- Axions can solve two very big problems in physics!
- The strong CP problem and the dark matter problem

Axions

- Axions can solve two very big problems in physics!
- The strong CP problem and the dark matter problem
- Axions may interact with a strong **B** field to produce a photon with frequency related to m_a

Inverse Primakoff effect

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

• Axion mass m_a determines the real photon frequency (f)

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

• $g_{a\gamma\gamma}$: Axion-photon coupling strength

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

- $g_{a\gamma\gamma}$: Axion-photon coupling strength
- B_0 : Magnetic field strength

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

- $g_{a\gamma\gamma}$: Axion-photon coupling strength
- B_0 : Magnetic field strength
- V: Cavity volume

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

- $g_{a\gamma\gamma}$: Axion-photon coupling strength
- B_0 : Magnetic field strength
- V: Cavity volume
- C: Form factor $\propto \vec{E}_{cav} \cdot \vec{B}_{ext}$

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

- $g_{a\gamma\gamma}$: Axion-photon coupling strength
- B_0 : Magnetic field strength
- V: Cavity volume
- C: Form factor $\propto \vec{E}_{cav} \cdot \vec{B}_{ext}$
- Q_L : Cavity quality factor

•
$$f = \frac{m_a}{h}c^2 + \frac{1}{2}\frac{m_a}{h}v^2$$

- $g_{a\gamma\gamma}$: Axion-photon coupling strength
- B_0 : Magnetic field strength
- V: Cavity volume
- C: Form factor $\propto \vec{E}_{cav} \cdot \vec{B}_{ext}$
- Q_L : Cavity quality factor
- β : Antenna coupling

• $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment •

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment •

• SNR =
$$\frac{P_{\text{signal}}}{k_{\text{B}}T_{\text{S}}} \sqrt{\frac{\tau}{\Delta v_{\text{a}}}}$$

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment

• SNR =
$$\frac{P_{\text{signal}}}{k_{\text{B}}T_{\text{S}}} \sqrt{\frac{\tau}{\Delta v_{\text{a}}}}$$

<u>Scan rate</u> - How fast we can exclude axions at a given mass and coupling

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment lacksquare

• SNR =
$$\frac{P_{\text{signal}}}{k_{\text{B}}T_{\text{S}}} \sqrt{\frac{\tau}{\Delta v_{\text{a}}}}$$

<u>Scan rate</u> - How fast we can exclude axions at a given mass and coupling

$$\frac{df}{dt} = \left(\frac{g_{a\gamma\gamma}^4 \rho_a^2 Q_a}{m_a^2 k_B^2}\right) \frac{B_0^4}{\mathrm{SNR}^2 T_S^2} C^2 V^2 Q_L \frac{\beta}{(1+1)^2}$$

2

 $-\beta)^2$

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment ullet

• SNR =
$$\frac{P_{\text{signal}}}{k_{\text{B}}T_{\text{S}}} \sqrt{\frac{\tau}{\Delta v_{\text{a}}}}$$

<u>Scan rate</u> - How fast we can exclude axions at a given mass and coupling

$$\frac{df}{dt} = \left(\frac{g_{a\gamma\gamma}^{4}\rho_{a}^{2}Q_{a}}{m_{a}^{2}k_{B}^{2}}\right) \frac{B_{0}^{4}}{SNR^{2}T_{S}^{2}}C^{2}V^{2}Q_{L}\frac{\beta^{2}}{(1+1)^{2}}$$
Determined by nature

2

 β)²

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment ullet

• SNR =
$$\frac{P_{\text{signal}}}{k_{\text{B}}T_{\text{S}}} \sqrt{\frac{\tau}{\Delta v_{\text{a}}}}$$

<u>Scan rate</u> - How fast we can exclude axions at a given mass and coupling

$$\frac{df}{dt} = \left(\frac{g_{a\gamma\gamma}^{4}\rho_{a}^{2}Q_{a}}{m_{a}^{2}k_{B}^{2}}\right) \frac{B_{0}^{4}}{SNR^{2}T_{S}^{2}}C^{2}V^{2}Q_{L}\frac{\beta^{2}}{(1+1)^{2}}$$
Determined by nature Experiment dependent

2

 β)²

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment ullet

• SNR =
$$\frac{P_{\text{signal}}}{k_{\text{B}}T_{\text{S}}} \sqrt{\frac{\tau}{\Delta v_{\text{a}}}}$$

<u>Scan rate</u> - How fast we can exclude axions at a given mass and coupling

$$\frac{df}{dt} = \left(\frac{g_{a\gamma\gamma}^{4}\rho_{a}^{2}Q_{a}}{m_{a}^{2}k_{B}^{2}}\right)\frac{B_{0}^{4}}{SNR^{2}T_{S}^{2}}C^{2}V^{2}Q_{L}\frac{\beta}{(1+1)}$$
Determined by nature Experiment dependent Cavity

dependent

- $P_{\text{signal}} \approx \mathcal{O}(10^{-26}) W$
- Resolve this tiny signal above the noise of our experiment

• SNR =
$$\frac{P_{\text{signal}}}{k_{\text{B}}T_{\text{S}}} \sqrt{\frac{\tau}{\Delta v_{\text{a}}}}$$

<u>Scan rate</u> - How fast we can exclude axions at a given mass and coupling

$$\frac{df}{dt} = \left(\frac{g_{a\gamma\gamma}^{4}\rho_{a}^{2}Q_{a}}{m_{a}^{2}k_{B}^{2}}\right)\frac{B_{0}^{4}}{SNR^{2}T_{S}^{2}}C^{2}V^{2}Q_{L}\frac{\beta}{(1+1)}$$
Determined by nature Experiment dependent Cavity

• High mass (frequency) axion haloscope hosted at UWA

- High mass (frequency) axion haloscope hosted at UWA
- Why "high mass" (>40µeV)?

- High mass (frequency) axion haloscope hosted at UWA
- Why "high mass" (>40µeV)?
- The high mass parameter space is largely unexplored with many predicitons..

- High mass (frequency) axion haloscope hosted at UWA
- Why "high mass" (>40µeV)?
- The high mass parameter space is largely unexplored with many predicitons..
- **SMASH** model predicts $50 \le m_a \le 200 \, \mu eV$

- High mass (frequency) axion haloscope hosted at UWA
- Why "high mass" (>40µeV)?
- The high mass parameter space is largely unexplored with many predicitons..
- **SMASH** model predicts $50 \le m_a \le 200 \, \mu eV$
- QCD lattice simulations favour $40 \le m_a \le 180 \, \mu eV$

- High mass (frequency) axion haloscope hosted at UWA
- Why "high mass" (>40µeV)?
- The high mass parameter space is largely unexplored with many predicitons..
- **SMASH** model predicts $50 \le m_a \le 200 \, \mu eV$
- QCD lattice simulations favour $40 \le m_a \le 180 \, \mu eV$
- VISH ν model predicts $40 \, \mu eV \le m_a \le 2 \, \mathrm{m} eV$ (Alexei Sopov) –

- High mass (frequency) axion haloscope hosted at UWA
- Why "high mass" (>40µeV)?
- The high mass parameter space is largely unexplored with many predicitons..
- **SMASH** model predicts $50 \le m_a \le 200 \, \mu eV$
- QCD lattice simulations favour $40 \le m_a \le 180 \, \mu eV$
- VISH ν model predicts $40\,\mu eV \leq m_a \leq 2\,\mathrm{m}eV$ (Alexei Sopov) -
- **ORGAN** is uniquely positioned to search this range

- High mass (frequency) axion haloscope hosted at UWA
- Why "high mass" (>40µeV)?
- The high mass parameter space is largely unexplored with many predicitons..
- **SMASH** model predicts $50 \le m_a \le 200 \, \mu eV$
- QCD lattice simulations favour $40 \le m_a \le 180 \, \mu eV$
- VISH ν model predicts $40\,\mu eV \leq m_a \leq 2\,\mathrm{m}eV$ (Alexei Sopov) –
- **ORGAN** is uniquely positioned to search this range
- $\frac{df}{dt} \propto f^{-14/3} \rightarrow$ High frequency (mass) scales poorly

Scan between 15-16 GHz

Tuning rod

Scan between 15-16 GHz

Rotation stage

Tuning rod

Scan between 15-16 GHz

 $\overrightarrow{E}_{cav} \bullet \overrightarrow{B}_{ext} \neq 0$

Rotation stage

TM₀₁₀ mode

Tuning rod

- Scan between 15-16 GHz
- **Tuning:** moving the rod radially perturbs the axion sensitive mode, shifting the frequency

 $\overrightarrow{E}_{cav} \bullet \overrightarrow{B}_{ext} \neq 0$

TM₀₁₀ mode

Rotation stage

'Mode Map'

• What do we mean by scanning?

• What do we mean by scanning?

Dilution fridge

Step motor

• What do we mean by scanning?

ORGAN DAQ

• What do we mean by scanning?

ORGAN DAQ

• What do we mean by scanning?

ORGAN DAQ

ORGAN DAQ

 Placing limits 'for free' on other dark matter candidates

 Placing limits 'for free' on other dark matter candidates

Limits on Dark Photons, Scalars, and Axion-Electromagnetodynamics with The **ORGAN** Experiment

Ben T. McAllister,^{1,2,a} Aaron Quiskamp,^{1,b} Ciaran A. J. O'Hare,³ Paul Altin,⁴ Eugene N. Ivanov,¹ Maxim Goryachev,¹ and Michael E. Tobar^{1, c}

¹QDM Laboratory, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley WA 6009, Australia.

²Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St, Hawthorn VIC 3122, Australia

³School of Physics, Physics Road, The University of Sydney, NSW 2006 Camperdown, Sydney, Australia

⁴ARC Centre of Excellence For Engineered Quantum Systems,

- Placing limits 'for free' on other dark matter candidates
- Dark photons convert to detectable photons

Limits on Dark Photons, Scalars, and Axion-Electromagnetodynamics with The **ORGAN** Experiment

Ben T. McAllister,^{1,2,a} Aaron Quiskamp,^{1,b} Ciaran A. J. O'Hare,³ Paul Altin,⁴ Eugene N. Ivanov,¹ Maxim Goryachev,¹ and Michael E. Tobar^{1, c}

¹QDM Laboratory, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley WA 6009, Australia.

²Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St, Hawthorn VIC 3122, Australia

³School of Physics, Physics Road, The University of Sydney, NSW 2006 Camperdown, Sydney, Australia

⁴ARC Centre of Excellence For Engineered Quantum Systems,

- Placing limits 'for free' on other dark matter candidates
- Dark photons convert to detectable photons
- Simple scaling of Axion limits to Dark Photon limits

Limits on Dark Photons, Scalars, and Axion-Electromagnetodynamics with The **ORGAN** Experiment

Ben T. McAllister,^{1,2,a} Aaron Quiskamp,^{1,b} Ciaran A. J. O'Hare,³ Paul Altin,⁴ Eugene N. Ivanov,¹ Maxim Goryachev,¹ and Michael E. Tobar^{1, c}

¹QDM Laboratory, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley WA 6009, Australia.

²Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St, Hawthorn VIC 3122, Australia

³School of Physics, Physics Road, The University of Sydney, NSW 2006 Camperdown, Sydney, Australia

⁴ARC Centre of Excellence For Engineered Quantum Systems,

- Placing limits 'for free' on other dark matter candidates
- Dark photons convert to detectable photons
- Simple scaling of Axion limits to **Dark Photon limits**
- Scalar dark matter (eg. dilaton) limits can also be placed

Limits on Dark Photons, Scalars, and Axion-Electromagnetodynamics with The **ORGAN** Experiment

Ben T. McAllister,^{1,2,a} Aaron Quiskamp,^{1,b} Ciaran A. J. O'Hare,³ Paul Altin,⁴ Eugene N. Ivanov,¹ Maxim Goryachev,¹ and Michael E. Tobar^{1, c}

¹QDM Laboratory, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley WA 6009, Australia.

²Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St, Hawthorn VIC 3122, Australia

³School of Physics, Physics Road, The University of Sydney, NSW 2006 Camperdown, Sydney, Australia

⁴ARC Centre of Excellence For Engineered Quantum Systems,

• Search between ~26-27 GHz

- Search between ~26-27 GHz
- Length scale ~45% smaller than phase 1a

- Search between ~26-27 GHz
- Length scale ~45% smaller than phase 1a
- High frequency is difficult —> Resonator is <u>necessarily</u> small
- Relative tolerances are much bigger

- Search between ~26-27 GHz
- Length scale ~45% smaller than phase 1a
- High frequency is difficult —> Resonator is <u>necessarily</u> small
- Relative tolerances are much bigger

- Search between ~26-27 GHz
- Length scale ~45% smaller than phase 1a
- High frequency is difficult —> Resonator is <u>necessarily</u> small
- Relative tolerances are much bigger
- Greater number of mode crossings

- Search between ~26-27 GHz
- Length scale ~45% smaller than phase 1a
- High frequency is difficult —> Resonator is <u>necessarily</u> small
- Relative tolerances are much bigger
- Greater number of mode crossings
- Extremely sensitive to alignment and rod tilt

- Search between ~26-27 GHz
- Length scale ~45% smaller than phase 1a
- High frequency is difficult —> Resonator is <u>necessarily</u> small
- Relative tolerances are much bigger
- Greater number of mode crossings
- Extremely sensitive to alignment and rod tilt
- Novel high frequency resonator designs are needed!

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

Parameter	Tuning-rod cavity	Rectangular cavity
С	X	

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

Parameter	Tuning-rod cavity	Rectangular cavity
С	×	
Q	×	

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

Parameter	Tuning-rod cavity	Rectangular cavity
С	×	
Q	×	
V		X

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

Parameter	Tuning-rod	Rectangular
	cavity	cavity
С	×	
Q	×	
V		×
Mode crossings	×	

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

Parameter	Tuning-rod cavity	Rectangular cavity
С	×	
Q	×	
V		×
Mode crossings	×	
Bore utilisation		×

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

Parameter	Tuning-rod cavity	Rectangular cavity
С		
Q	×	
V		X
Mode crossings	×	
Bore utilisation		X
Tuning	×	

- Simple idea by Ben McAllister
- New tunable rectangular cavity solves many problems!

Parameter	Tuning-rod	Rectangular
	cavity	cavity
С	×	
Q	×	
V		×
Mode crossings	×	
Bore utilisation		×
Tuning	×	
Scan rate		=/ 🔽

• First search already complete!

- First search already complete!
- No mode crossings in 26-27 GHz target region!

Phase 1

 Targeted searches between 15-16 GHz and 26-27 GHz
~ month scale

Phase 2a

- Wider search (15-20 GHz) building on current expertise
 ~ year scale
- Move to mK temperatures and Standard Quantum Limited (SQL) ampifiers

Phase 2a

- Wider search (15-20 GHz) building on current expertise
 ~ year scale
- Move to mK temperatures and Standard Quantum Limited (SQL) ampifiers

Phase 2a

- Develop efficent single photon counting (SPC) devices
- Reach QCD axion model bands

Frequency (GHz)

Phase 2a

- Develop efficent single photon counting (SPC) devices
- Reach QCD axion model bands

(A quick detour..)

(A quick detour..)

• $Q \rightarrow Quantum$

(A quick detour..)

• $Q \rightarrow Quantum$

• Utilises a Joshephson Parametric Amplifier (JPA): $\downarrow T_s$

(A quick detour..)

• $Q \rightarrow Quantum$

• Utilises a Joshephson Parametric Amplifier (JPA): $\downarrow T_s$

(A quick detour..)

• $Q \rightarrow Quantum$

- Utilises a Joshephson Parametric Amplifier (JPA): $\downarrow T_s$
- Operates at mK: $\downarrow T_s$

(A quick detour..)

• $Q \rightarrow Quantum$

- Utilises a Joshephson Parametric Amplifier (JPA): $\downarrow T_s$
- Operates at mK: $\downarrow T_s$

• Variable coupling: $\uparrow Q_{\rm L} \frac{\beta^2}{(1+\beta)^2}$

(A quick detour..)

• $Q \rightarrow Quantum$

- Utilises a Joshephson Parametric Amplifier (JPA): $\downarrow T_s$
- Operates at mK: $\downarrow T_s$

• Plan for 5-10 x KSVZ sensitivity

• JPA has optimal gain between 6.1 - 6.4 GHz

- JPA has optimal gain between 6.1 6.4 GHz
- Optimise the cavity for this region → no mode crossings

- JPA has optimal gain between 6.1 6.4 GHz
- Optimise the cavity for this region → no mode crossings
- Tuning well at mK

- JPA has optimal gain between 6.1 6.4 GHz lacksquare
- Optimise the cavity for this region \rightarrow no mode crossings
- Tuning well at mK
- Final JPA calibrations happening now... ullet

- JPA has optimal gain between 6.1 6.4 GHz lacksquare
- Optimise the cavity for this region \rightarrow no mode crossings
- Tuning well at mK
- Final JPA calibrations happening now. lacksquare
- ~1 month scan planned for December

- JPA has optimal gain between 6.1 6.4 GHz
- Optimise the cavity for this region \rightarrow no mode crossings
- Tuning well at mK
- Final JPA calibrations happening now.
- ~1 month scan planned for December
- Set to be most sensitive limits in region ullet

- JPA has optimal gain between 6.1 6.4 GHz
- Optimise the cavity for this region → no mode crossings
- Tuning well at mK _____
- Final JPA calibrations happening now..
- ~1 month scan planned for December
- Set to be most sensitive limits in region
- Will be the first "High-Res" ORGAN search

ORGAN Low Frequency

- Increased interest in low frequency axion searches (<500 MHz) in recent times
- Problem: Cavities get HUGE
- Can use re-entrant cavities to circumvent this issue
- "Cake-like" re-entrant cavity for deployment in large MRI magnet bore at Swinburne
- Experiment under construction

Phase 1 complete

- Phase 1 complete
- Most sensitive limits above 15 GHz

- Phase 1 complete
- Most sensitive limits above 15 GHz
- ORGAN-Q commencing soon..

- Phase 1 complete
- Most sensitive limits above 15 GHz
- ORGAN-Q commencing soon..
- Phase 2 R&D ongoing

- Phase 1 complete
- Most sensitive limits above 15 GHz
- ORGAN-Q commencing soon..
- Phase 2 R&D ongoing
 - Superconducting cavities: 1Q

- Phase 1 complete
- Most sensitive limits above 15 GHz
- ORGAN-Q commencing soon..
- Phase 2 R&D ongoing
 - Superconducting cavities: 1Q
 - Single-photon counting: $\downarrow T_s$

- Phase 1 complete
- Most sensitive limits above 15 GHz
- ORGAN-Q commencing soon..
- Phase 2 R&D ongoing
 - Superconducting cavities: 1Q
 - Single-photon counting: $\downarrow T_s$
 - Multiple cavity array: 1V

