Awions and Wave Like Daik Maitter

Searching for Putative Wave-Like Dark Matter

Cosmic Frontier:

Wave-Like Dark Matter

Joerg Jaeckel

University of Heidelberg

Gray Rybka

University of Washington

Lindley Winslow

Massachusetts Institute of Technology

Searching for Putative Wave-Like Dark Matter

SNOWMASS

WLDM: GENERIC EXPERIMENT

Searching for Putative Wave-Like Dark Matter

SNOWMASS

WLDM: GENERIC EXPERIMENT

Cosmic Frontier:

Wave-Like Dark Matter

Joerg Jaeckel

University of Heidelberg

Gray Rybka

University of Washington

Lindley Winslow

Massachusetts Institute of Technology

Cosmic Frontier:
Wave-Like Dark Matter
Joerg Jaerkel
University of Heidelberg
Gray Rybka
University of Washington
Lindley Winslow
Massachuselts Insitutue of Technology

Design Physics Package:

Searching for Putative Wave-Like Dark Matter

SNOWMASS

Cosmic Frontier:

 Wave-Like Dark Matter
Joerg Jaeckel

WLDM: GENERIC EXPERIMENT

Design Physics Package:
-> Sensitive to the type of Dark Matter of Interest

Searching for Putative Wave-Like Dark Matter

WLDM: GENERIC EXPERIMENT

Design Physics Package:
-> Sensitive to the type of Dark Matter of Interest
-> Axion, Dilaton, Dark Photon etc.

Searching for Putative Wave-Like Dark Matter

SNOWMASS

Cosmic Frontier:

 Wave-Like Dark Matter
Joerg Jaeckel

University of Heidelberg

Gray Rybka

University of Washington

Lindley Winslow

Massachusetts Institute of Technology

WLDM: GENERIC EXPERIMENT

Design Physics Package:
-> Sensitive to the type of Dark Matter of Interest
-> Axion, Dilaton, Dark Photon etc.
-> Theory interacts with Experiment: How Dark Matter interacts with SM Particles: Optimise Signal

Searching for Putative Wave-Like Dark Matter

SNOWMASS

Cosmic Frontier:

 Wave-Like Dark Matter
Joerg Jaeckel

University of Heidelberg

Gray Rybka

University of Washington

Lindley Winslow

Massachusetts Institute of Technology

WLDM: GENERIC EXPERIMENT

Design Physics Package:
-> Sensitive to the type of Dark Matter of Interest
-> Axion, Dilaton, Dark Photon etc.
-> Theory interacts with Experiment: How Dark Matter interacts with SM Particles: Optimise Signal
-> Reduce Noise, Fundamental Limit is Quantum Noise

Searching for Putative Wave-Like Dark Matter

SNOWMASS

WLDM: GENERIC EXPERIMENT

Design Physics Package:
-> Sensitive to the type of Dark Matter of Interest
-> Axion, Dilaton, Dark Photon etc.
-> Theory interacts with Experiment: How Dark Matter interacts with SM Particles: Optimise Signal
-> Reduce Noise, Fundamental Limit is Quantum Noise
-> Surpass Quantum Limit: Quantum Metrology

STATUS AND PLANS

CURRENT AXION DM
PROGRAMS

STATUS AND PLANS

CURRENT AXION DM
 PROGRAMS

ORGAN

STATUS AND PLANS

CURRENT AXION DM
 PROGRAMS

ORGAN

UPLOAD

STATUS AND PLANS

CURRENT AXION DM PROGRAMS

ORGAN

UPLOAD

ADMX

Collaboration

CURRENT AXION DM PROGRAMS

NEW AXION DM PROGRAMS

ORGAN

UPLOAD

ADMX

Collaboration

CURRENT AXION DM PROGRAMS

NEW AXION DM PROGRAMS

ORGAN

TWISTED ANYON

UPLOAD

ADMX

Collaboration

CURRENT AXION DM PROGRAMS

NEW AXION DM PROGRAMS

ORGAN
TWISTED ANYON

UPLOAD

AXION-MONOPOLE COUPLINGS

ADMX

Collaboration

CURRENT AXION DM PROGRAMS

ORGAN

TWISTED ANYON

UPLOAD
AXION-MONOPOLE COUPLINGS

ADMX

Collaboration

CURRENT AXION DM PROGRAMS

ORGAN
TWISTED ANYON
NEW AXION DM PROGRAMS

SCALAR DM PROGRAM

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

UPLOAD
AXION-MONOPOLE COUPLINGS

ADMX
Collaboration

SCALAR DM PROGRAM

CURRENT AXION DM PROGRAMS

ORGAN

UPLOAD

NEW AXION DM PROGRAMS

TWISTED ANYON

AXION-MONOPOLE COUPLINGS

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

NEW SCALAR DM PROGRAM

ADMX
Collaboration

CURRENT AXION DM PROGRAMS

ORGAN
TWISTED ANYON

AXION-MONOPOLE COUPLINGS

NEW AXION DM PROGRAMS

SCALAR DM PROGRAM

BULK ACOUSTIC WAVE:

 OSCILLATING FUNDAMENTAL CONSTANTSNEW SCALAR DM PROGRAM

ELECTROMAGNETIC TECHNIQUES

SCALAR DM PROGRAM

CURRENT AXION DM PROGRAMS

ORGAN
TWISTED ANYON

AXION-MONOPOLE COUPLINGS

ADMX
Collaboration
NEW AXION DM PROGRAMS

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

NEW SCALAR DM PROGRAM

ELECTROMAGNETIC TECHNIQUES

UPLOAD

ADMX

STATUS CURRENT AXION DM PROGRAMS
Completed run 1b, two papers under review, Aaron Quiskamp to report

UPLOAD

ADMX

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $\mathbf{1 0 0} \boldsymbol{\mu \mathbf { e V }}$, accepted, PRL, arXiv:2310.00904 [hep-ex].

UPLOAD

ADMX

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $\mathbf{1 0 0} \boldsymbol{\mu \mathbf { e V }}$, accepted, PRL, arXiv:2310.00904 [hep-ex].
[2] BT McAllister, Aaron P. Quiskamp, Michael E. Tobar, Tunable Rectangular Resonant Cavities for Axion Haloscopes, accepted, PRD, arXiv:2309.12098 [physics.ins-det].
UPLOAD

ADMX

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $100 \boldsymbol{\mu e V}$, accepted, PRL, arXiv:2310.00904 [hep-ex].
[2] BT McAllister, Aaron P. Quiskamp, Michael E. Tobar, Tunable Rectangular Resonant Cavities for Axion Haloscopes, accepted, PRD, arXiv:2309.12098 [physics.ins-det].
UPLOAD
Completed first run with Power technique, improved results by 3 OoM over frequency technique, put first limits on axion-monopole term.
Catriona Thomson defended thesis Nov 2023.

ADMX

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $100 \boldsymbol{\mu e V}$, accepted, PRL, arXiv:2310.00904 [hep-ex].
[2] BT McAllister, Aaron P. Quiskamp, Michael E. Tobar, Tunable Rectangular Resonant Cavities for Axion Haloscopes, accepted, PRD, arXiv:2309.12098 [physics.ins-det].
UPLOAD
Completed first run with Power technique, improved results by 3 OoM over frequency technique, put first limits on axion-monopole term.
Catriona Thomson defended thesis Nov 2023.
[3] CA Thomson, M Goryachev, BT McAllister, EN Ivanov, P Altin, ME Tobar, Searching for low-mass axions using resonant upconversion, Phys. Rev. D, vol. 107, 112003, 2023.
ADMX

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $100 \boldsymbol{\mu e V}$, accepted, PRL, arXiv:2310.00904 [hep-ex].
[2] BT McAllister, Aaron P. Quiskamp, Michael E. Tobar, Tunable Rectangular Resonant Cavities for Axion Haloscopes, accepted, PRD, arXiv:2309.12098 [physics.ins-det].
UPLOAD
Completed first run with Power technique, improved results by 3 OoM over frequency technique, put first limits on axion-monopole term.

Catriona Thomson defended thesis Nov 2023.

[3] CA Thomson, M Goryachev, BT McAllister, EN Ivanov, P Altin, ME Tobar, Searching for low-mass axions using resonant upconversion, Phys. Rev. D, vol. 107, 112003, 2023.
ADMX
[4] C Bartram, T Braine, R Cervantes, N Crisosto, N Du, G Leum, P Mohapatra, T Nitta, LJ Rosenberg, G Rybka,..... M Goryachev, BT McAllister, A Quiskamp, C Thomson, ME Tobar, ... K Serniak, Dark matter axion search using a Josephson Traveling wave parametric amplifier, Rev. Sci. Instrum., vol. 94, 044703, 2023

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $100 \boldsymbol{\mu e V}$, accepted, PRL, arXiv:2310.00904 [hep-ex].
[2] BT McAllister, Aaron P. Quiskamp, Michael E. Tobar, Tunable Rectangular Resonant Cavities for Axion Haloscopes, accepted, PRD, arXiv:2309.12098 [physics.ins-det].

UPLOAD

Completed first run with Power technique, improved results by 3 OoM over frequency technique, put first limits on axion-monopole term.

Catriona Thomson defended thesis Nov 2023.

[3] CA Thomson, M Goryachev, BT McAllister, EN Ivanov, P Altin, ME Tobar, Searching for low-mass axions using resonant upconversion, Phys. Rev. D, vol. 107, 112003, 2023.

ADMX

[4] C Bartram, T Braine, R Cervantes, N Crisosto, N Du, G Leum, P Mohapatra, T Nitta, LJ Rosenberg, G Rybka,..... M Goryachev, BT McAllister, A Quiskamp, C Thomson, ME Tobar, ... K Serniak, Dark matter axion search using a Josephson Traveling wave parametric amplifier, Rev. Sci. Instrum., vol. 94, 044703, 2023
[5] T Nitta, T Braine, N Du, M Guzzetti, C Hanretty, G Leum, LJ Rosenberg, G Rybka, ...M Goryachev, E Hartman, BT McAllister, A Quiskamp, C Thomson, ME Tobar, JA Dror, H Murayama, NL Rodd. Search for a dark-matter-induced cosmic axion background with ADMX, Phys. Rev. Lett. vol. 131, 101002, 2023.

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $100 \boldsymbol{\mu e V}$, accepted, PRL, arXiv:2310.00904 [hep-ex].
[2] BT McAllister, Aaron P. Quiskamp, Michael E. Tobar, Tunable Rectangular Resonant Cavities for Axion Haloscopes, accepted, PRD, arXiv:2309.12098 [physics.ins-det].

UPLOAD

Completed first run with Power technique, improved results by 3 OoM over frequency technique, put first limits on axion-monopole term. Catriona Thomson defended thesis Nov 2023.
[3] CA Thomson, M Goryachev, BT McAllister, EN Ivanov, P Altin, ME Tobar, Searching for low-mass axions using resonant upconversion, Phys. Rev. D, vol. 107, 112003, 2023.

ADMX

[4] C Bartram, T Braine, R Cervantes, N Crisosto, N Du, G Leum, P Mohapatra, T Nitta, LJ Rosenberg, G Rybka,..... M Goryachev, BT McAllister, A Quiskamp, C Thomson, ME Tobar, ... K Serniak, Dark matter axion search using a Josephson Traveling wave parametric amplifier, Rev. Sci. Instrum., vol. 94, 044703, 2023
[5] T Nitta, T Braine, N Du, M Guzzetti, C Hanretty, G Leum, LJ Rosenberg, G Rybka, ...M Goryachev, E Hartman, BT McAllister, A Quiskamp, C Thomson, ME Tobar, JA Dror, H Murayama, NL Rodd. Search for a dark-matter-induced cosmic axion background with ADMX, Phys. Rev. Lett. vol. 131, 101002, 2023.
[6] S Chakrabarty, JR Gleason, Y Han, AT Hipp, M Solano, P Sikivie, NS Sullivan, DB Tanner, M Goryachev, E Hartman, BT McAllister, A Quiskamp, C Thomson, ME Tobar, ...T Nitta, Low Frequency ($\mathbf{1 0 0} \mathbf{- 6 0 0} \mathbf{~ M H z) ~ S e a r c h e s ~ w i t h ~ A x i o n ~ C a v i t y ~ H a l o s c o p e s , ~ u n d e r ~ r e v i e w ~ P R D , ~}$ arXiv:2303.07116 [hep-ph], 2023. (Similar Experiment "ORGAN-Low" headed by Ben McAllister at Swinburne)

STATUS CURRENT AXION DM PROGRAMS

Completed run 1b, two papers under review, Aaron Quiskamp to report
[1] A Quiskamp, BT McAllister, P Altin, EN Ivanov, M Goryachev, ME Tobar, Exclusion of ALP Cogenesis Dark Matter in a Mass Window Above $\mathbf{1 0 0} \boldsymbol{\mu \mathbf { e V }}$, accepted, PRL, arXiv:2310.00904 [hep-ex].
[2] BT McAllister, Aaron P. Quiskamp, Michael E. Tobar, Tunable Rectangular Resonant Cavities for Axion Haloscopes, accepted, PRD, arXiv:2309.12098 [physics.ins-det].

UPLOAD

Completed first run with Power technique, improved results by 3 OoM over frequency technique, put first limits on axion-monopole term.

Catriona Thomson defended thesis Nov 2023.

[3] CA Thomson, M Goryachev, BT McAllister, EN Ivanov, P Altin, ME Tobar, Searching for low-mass axions using resonant upconversion, Phys. Rev. D, vol. 107, 112003, 2023.

ADMX

[4] C Bartram, T Braine, R Cervantes, N Crisosto, N Du, G Leum, P Mohapatra, T Nitta, LJ Rosenberg, G Rybka,..... M Goryachev, BT McAllister, A Quiskamp, C Thomson, ME Tobar, ... K Serniak, Dark matter axion search using a Josephson Traveling wave parametric amplifier, Rev. Sci. Instrum., vol. 94, 044703, 2023
[5] T Nitta, T Braine, N Du, M Guzzetti, C Hanretty, G Leum, LJ Rosenberg, G Rybka, ...M Goryachev, E Hartman, BT McAllister, A Quiskamp, C Thomson, ME Tobar, JA Dror, H Murayama, NL Rodd. Search for a dark-matter-induced cosmic axion background with ADMX, Phys. Rev. Lett. vol. 131, 101002, 2023.
[6] S Chakrabarty, JR Gleason, Y Han, AT Hipp, M Solano, P Sikivie, NS Sullivan, DB Tanner, M Goryachev, E Hartman, BT McAllister, A Quiskamp, C Thomson, ME Tobar, ...T Nitta, Low Frequency (100-600 MHz) Searches with Axion Cavity Haloscopes, under review PRD, arXiv:2303.07116 [hep-ph], 2023. (Similar Experiment "ORGAN-Low" headed by Ben McAllister at Swinburne)
[7] C Bartram, T Braine, R Cervantes, N Crisosto, N Du, C Goodman, M Guzzetti, C Hanretty, S Lee, G Leum, LJ Rosenberg, G Rybka, ...M Goryachev, B McAllister, A Quiskamp, C Thomson, ME Tobar, .. P Sikivie, NS Sullivan, DB Tanner, EJ Daw, MG Perry, JH Buckley, C Gaikwad, J Hoffman, KW Murch, J Russell, Non-Virialized Axion Search Sensitive to Doppler Effects in the Milky Way Halo, under review PRD, arXiv:2311.07748 [astro-ph.CO], 2023

TWISTED ANYON

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

STATUS SCALAR DM PROGRAM
BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

TWISTED ANYON Emma Paterson to report

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

STATUS SCALAR DM PROGRAM
BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

TWISTED ANYON Emma Paterson to report

[8] JF Bourhill, ECI Paterson, M Goryachev, ME Tobar, Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon Rotational Symmetry with Bulk Modes of Non-Zero Helicity, Phys. Rev. D., Phys. Rev. D, vol. 108, 052014, 2023

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

TWISTED ANYON Emma Paterson to report

[8] JF Bourhill, ECI Paterson, M Goryachev, ME Tobar, Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon Rotational Symmetry with Bulk Modes of Non-Zero Helicity, Phys. Rev. D., Phys. Rev. D, vol. 108, 052014, 2023.

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

[9] ME Tobar, CA Thomson, BT McAllister, MGoryachev, A Sokolov, A Ringwald, Sensitivity of Resonant Axion Haloscopes to Quantum Electromagnetodynamics, Annalen der Physik, 2200594, 2023.

STATUS NEW AXION DM PROGRAMS

TWISTED ANYON Emma Paterson to report

[8] JF Bourhill, ECI Paterson, M Goryachev, ME Tobar, Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon Rotational Symmetry with Bulk Modes of Non-Zero Helicity, Phys. Rev. D., Phys. Rev. D, vol. 108, 052014, 2023.

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

[9] ME Tobar, CA Thomson, BT McAllister, MGoryachev, A Sokolov, A Ringwald, Sensitivity of Resonant Axion Haloscopes to Quantum Electromagnetodynamics, Annalen der Physik, 2200594, 2023.
[10] ME Tobar, AV Sokolov, A Ringwald, M Goryachev, Searching for GUT-scale OCD axions and monopoles with a high-voltage capacitor, Phys. Rev. D, vol. 108, 035024, 2023.

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

STATUS NEW AXION DM PROGRAMS

TWISTED ANYON
 Emma Paterson to report

[8] JF Bourhill, ECI Paterson, M Goryachev, ME Tobar, Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon Rotational Symmetry with Bulk Modes of Non-Zero Helicity, Phys. Rev. D., Phys. Rev. D, vol. 108, 052014, 2023

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

[9] ME Tobar, CA Thomson, BT McAllister, MGoryachev, A Sokolov, A Ringwald, Sensitivity of Resonant Axion Haloscopes to Ouantum Electromagnetodynamics, Annalen der Physik, 2200594, 2023.
[10] ME Tobar, AV Sokolov, A Ringwald, M Goryachev, Searching for GUT-scale OCD axions and monopoles with a high-voltage capacitor Phys. Rev. D, vol. 108, 035024, 2023.
[11] BT McAllister, A Quiskamp, C O'Hare, P Altin, EN Ivanov, M Goryachev, ME Tobar, Limits on Dark Photons, Scalars, and AxionElectromagnetodynamics with The ORGAN Experiment, Annalen der Physik, 2200622, 2023.

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

STATUS NEW AXION DM PROGRAMS

TWISTED ANYON

Emma Paterson to report

[8] JF Bourhill, ECI Paterson, M Goryachev, ME Tobar, Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon Rotational Symmetry with Bulk Modes of Non-Zero Helicity, Phys. Rev. D., Phys. Rev. D, vol. 108, 052014, 2023

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

[9] ME Tobar, CA Thomson, BT McAllister, MGoryachev, A Sokolov, A Ringwald, Sensitivity of Resonant Axion Haloscopes to Ouantum Electromagnetodynamics, Annalen der Physik, 2200594, 2023.
[10] ME Tobar, AV Sokolov, A Ringwald, M Goryachev, Searching for GUT-scale OCD axions and monopoles with a high-voltage capacitor, Phys. Rev. D, vol. 108, 035024, 2023.
[11] BT McAllister, A Quiskamp, C O'Hare, P Altin, EN Ivanov, M Goryachev, ME Tobar, Limits on Dark Photons, Scalars, and AxionElectromagnetodynamics with The ORGAN Experiment, Annalen der Physik, 2200622, 2023.

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS

[12] WM Campbell, S Galliou, ME Tobar, M Goryachev, Electro-mechanical tuning of high-Q bulk acoustic phonon modes at cryogenic temperatures, Appl. Phys. Lett. 122, 032202, 2023.

STATUS NEW AXION DM PROGRAMS

TWISTED ANYON

Emma Paterson to report

[8] JF Bourhill, ECI Paterson, M Goryachev, ME Tobar, Searching for Ultra-Light Axions with Twisted Cavity Resonators of Anyon Rotational Symmetry with Bulk Modes of Non-Zero Helicity, Phys. Rev. D., Phys. Rev. D, vol. 108, 052014, 2023

MONOPOLE AXION COUPLINGS and SCALAR DARK MATTER

[9] ME Tobar, CA Thomson, BT McAllister, MGoryachev, A Sokolov, A Ringwald, Sensitivity of Resonant Axion Haloscopes to Ouantum Electromagnetodynamics, Annalen der Physik, 2200594, 2023.
[10] ME Tobar, AV Sokolov, A Ringwald, M Goryachev, Searching for GUT-scale OCD axions and monopoles with a high-voltage capacitor Phys. Rev. D, vol. 108, 035024, 2023.
[11] BT McAllister, A Quiskamp, C O'Hare, P Altin, EN Ivanov, M Goryachev, ME Tobar, Limits on Dark Photons, Scalars, and AxionElectromagnetodynamics with The ORGAN Experiment, Annalen der Physik, 2200622, 2023.

BULK ACOUSTIC WAVE: OSCILLATING FUNDAMENTAL CONSTANTS
[12] WM Campbell, S Galliou, ME Tobar, M Goryachev, Electro-mechanical tuning of high-Q bulk acoustic phonon modes at cryogenic temperatures, Appl. Phys. Lett. 122, 032202, 2023.
[13] WM Campbell, M Goryachev, ME Tobar, The Multi-mode Acoustic Gravitational Wave Experiment: MAGE, Sci Rep 13, $10638,2023$.

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

Frank Wilczek

2020 J. J. Sakurai Prize for Theoretical Particle Physics

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

Frank Wilczek

2020 J. J. Sakurai Prize for Theoretical Particle Physics

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

Frank Wilczek

$$
\text { axion-photon coupling } g_{a r \gamma}->\text { chiral anomaly }
$$

2020 J. J. Sakurai Prize for Theoretical Particle Physics

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

Frank Wilczek

$$
\text { axion-photon coupling } g_{a y \gamma}->\text { chiral anomaly }
$$

2020 J. J. Sakurai Prize for Theoretical Particle Physics

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

Frank Wilczek

$$
\text { axion-photon coupling } g_{a y \gamma}->\text { chiral anomaly }
$$

2020 J. J. Sakurai Prize for Theoretical Particle Physics

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

Frank Wilczek

$$
\text { axion-photon coupling } g_{a y \gamma}->\text { chiral anomaly }
$$

2020 J. J. Sakurai Prize for Theoretical Particle Physics

The Axion Particle Should it Exist!

1) Solves Strong CP Problem
2) Predicted to form in Early Universe
3) Is Dark Matter the Axion?

Frank Wilczek

$$
\text { axion-photon coupling } g_{a y \gamma}->\text { chiral anomaly }
$$

2020 J. J. Sakurai Prize for Theoretical Particle Physics

Photon Haloscopes

Modified Axion Electrodynamics

Axion Equation of Motion:

$$
\begin{aligned}
& \text { Klein-Gordon equation } \\
& \text { for massive spin } 0 \\
& \text { particle } \\
& \begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
= & \operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
\end{aligned}
$$

$$
\mu_{0} \vec{J}_{e}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

$$
\nabla \cdot \vec{B}=0
$$

$$
\nabla \times \vec{E}+\partial_{t} \vec{B}=0
$$

Photon Haloscopes

Modified Axion Electrodynamics

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

(Represents two photons)

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field

$$
\begin{array}{cl}
& \begin{array}{c}
\text { Modified Ixion Electrodynamics } \\
\text { Avion Equation of Motion: } \\
\text { (Represents two photons) }
\end{array} \\
\begin{array}{cl}
\text { Klein-Gordon equation } \\
\text { for massive spin 0 }
\end{array} & \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
\text { particle } \\
\begin{array}{cl}
a(t)=\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) & \\
& \mu_{0} \vec{J}_{e}-g_{a r \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
=\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right) & \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{array}
\end{array}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer

Modified Axion Electrodynamics

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

(Represents two photons)

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation

Modified Axion Electrodynamics

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

(Represents two photons)

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion

$$
\begin{aligned}
& \text { Axion Equation of Motion: } \\
& \text { Klein-Gordon equation } \\
& \text { for massive spin } 0 \\
& \text { particle } \\
& \begin{array}{c}
a(t)=\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
=\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{array}
\end{aligned}
$$

(Represents two photons)

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion
- Zilch (electromagnetism)

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

Modified Axion Electrodynamics

(Represents two photons)

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion
- Zilch (electromagnetism)

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

Modified Axion Electrodynamics

$$
\begin{aligned}
& \text { (Represents two photons) } \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}_{e}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion
- Zilch (electromagnetism)

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

Modified Axion Electrodynamics
(Represents two photons)
$\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a$
$\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=$
$\mu_{0} \vec{J}_{e}-g_{a y r} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)$
$\nabla \cdot \vec{B}=0$
$\nabla \times \vec{E}+\partial_{t} \vec{B}=0$

$$
\epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b}
$$

$$
\frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion
- Zilch (electromagnetism)

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

Modified Axion Electrodynamics

$$
\begin{aligned}
& \text { (Represents two photons) } \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}= \\
& \mu_{0} \vec{J}_{e}-g_{a r y} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right) \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}+\partial_{t} \vec{B}=0
\end{aligned}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion
- Zilch (electromagnetism)

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

Modified Axion Electrodynamics

$$
\begin{aligned}
& \text { (Represents two phot } \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r \gamma} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
\end{aligned}
$$

$$
\mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

$$
\nabla \cdot \vec{B}=0
$$

$$
\nabla \times \vec{E}+\partial_{t} \vec{B}=0
$$

$$
\begin{aligned}
& \epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b} \\
& \frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e} \\
& \rho_{a b}=g_{a r \gamma} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a b}=-g_{a \gamma \gamma} \epsilon_{0} c \partial_{t}\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a e}=-g_{a r \gamma} \epsilon_{0} c \nabla \times\left(a(t) \vec{E}_{0}(\vec{r}, t)\right)
\end{aligned}
$$

$$
\nabla \cdot \vec{J}_{a b}=-\partial_{t} \rho_{a b}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion
- Zilch (electromagnetism)

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

Modified Axion Electrodynamics

$$
\begin{aligned}
& \text { (Represents two phot } \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{\text {ary }} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
\end{aligned}
$$

$$
\mu_{0} \vec{J}_{e}-g_{a \gamma \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

$$
\nabla \cdot \vec{B}=0
$$

$$
\nabla \times \vec{E}+\partial_{t} \vec{B}=0
$$

Background field (subscript zero)
2) Created Photon Field (subscript 1)

$$
\begin{aligned}
& \epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b} \\
& \frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e} \\
& \rho_{a b}=g_{a \gamma \gamma} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a b}=-g_{a \gamma \gamma} \epsilon_{0} c \partial_{t}\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a e}=-g_{a r \gamma} \epsilon_{0} c \nabla \times\left(a(t) \vec{E}_{0}(\vec{r}, t)\right)
\end{aligned}
$$

$$
\nabla \cdot \vec{J}_{a b}=-\partial_{t} \rho_{a b}
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion
- Zilch (electromagnetism)

Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

(Represents two photons)

$$
\nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a
$$

$$
\nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
$$

$$
\mu_{0} \vec{J}_{e}-g_{a r \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right.
$$

$$
\nabla \cdot \vec{B}=0
$$

$$
\begin{aligned}
& \epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b} \\
& \frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e} \\
& \rho_{a b}=g_{a r \gamma} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a b}=-g_{a r \gamma} \epsilon_{0} c \partial_{t}\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a e}=-g_{a r \gamma} \epsilon_{0} c \nabla \times\left(a(t) \vec{E}_{0}(\vec{r}, t)\right) \\
& \nabla \cdot \vec{J}_{a b}=-\partial_{t} \rho_{a b}
\end{aligned}
$$

Background field (subscript zero)

2) Created Photon Field (subscript 1)

$$
\nabla \times \vec{E}+\partial_{t} \vec{B}=0
$$

Photon Haloscopes

- Axions convert into photons in presence of a background field
- Effectively an Axion -> Photon Transducer
- Similar to Modifications of Electrodynamics for Electricity Generation
- Difference: adds non-zero electromagnetic chirality to Eqns. of Motion

Modified Axion Electrodynamics
Axion Equation of Motion:
Klein-Gordon equation for massive spin 0 particle

$$
\begin{aligned}
& \text { (Represents two photons) } \\
& \nabla \cdot \vec{E}=\frac{\rho_{e}}{\varepsilon_{0}}+c g_{a r y} \vec{B} \cdot \nabla a \\
& \nabla \times \vec{B}-\frac{1}{c^{2}} \partial_{t} \vec{E}=
\end{aligned}
$$

$$
\begin{aligned}
a(t) & =\frac{1}{2}\left(\tilde{a} e^{-j \omega_{a} t}+\tilde{a}^{*} e^{j \omega_{a} t}\right) \\
& =\operatorname{Re}\left(\tilde{a} e^{-j \omega_{a} t}\right)
\end{aligned}
$$

$$
\mu_{0} \vec{J}_{e}-g_{a y \gamma} \epsilon_{0} c\left(\vec{B} \partial_{t} a+\nabla a \times \vec{E}\right)
$$

$$
\nabla \cdot \vec{B}=0
$$

2) Created Photon Field (subscript 1)

$$
\begin{aligned}
& \epsilon_{0} \nabla \cdot \vec{E}_{1}=\rho_{e 1}+\rho_{a b} \\
& \frac{1}{\mu_{0}} \nabla \times \vec{B}_{1}-\epsilon_{0} \partial_{t} \vec{E}_{1}=\vec{J}_{e 1}+\vec{J}_{a b}+\vec{J}_{a e} \\
& \rho_{a b}=g_{a y \gamma} \epsilon_{0} c \nabla \cdot\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a b}=-g_{a y \gamma} \epsilon_{0} c \partial_{t}\left(a(t) \vec{B}_{0}(\vec{r}, t)\right) \\
& \vec{J}_{a e}=-g_{a r \gamma} \epsilon_{0} c \nabla \times\left(a(t) \vec{E}_{0}(\vec{r}, t)\right) \\
& \nabla \cdot \vec{J}_{a b}=-\partial_{t} \rho_{a b}
\end{aligned}
$$

$$
\nabla \times \vec{E}+\partial_{t} \vec{B}=0
$$

Measure Created Photon

$\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{\text {ary }} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}$
$\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{\text {ary }} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)$
$-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{\text {arr }} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$.

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Measure Created Photon

$$
\nabla \cdot \vec{D}_{1}=\rho_{e_{1}}
$$

$$
\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a r \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}
$$

$$
\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)
$$

$$
-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}
$$

$$
\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0
$$

$$
\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0 .
$$

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Measure Created Photon } & \nabla \cdot \vec{D}_{1}=\rho_{e_{1}} \\
\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}} & \nabla \times \vec{H}_{1}-\partial_{t} \\
\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma}(t)}{c} \vec{E}_{0}(\vec{r}, t)\right) & \nabla \cdot \vec{B}_{1}(\vec{r}, t)= \\
-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r \gamma} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}} & \nabla \times \vec{E}_{1}(\vec{r}, t) \\
\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 & \\
\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0 .
\end{array}
$$

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Measure Created Photon

$$
\nabla \cdot \vec{D}_{1}=\rho_{e_{1}}
$$

$\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}$
$\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)$
$-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$.

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Constitutive Relations(Include Matter)
$\nabla \times \vec{H}_{1}-\partial_{t} \vec{D}_{1}=\vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$,

$$
\begin{aligned}
& \vec{H}_{1}(\vec{r}, t)=\frac{\vec{B}_{1}}{\mu_{0}}-\vec{M}_{1}-\vec{M}_{a 1} ; \\
& \vec{D}_{1}(\vec{r}, t)=\epsilon_{0} \vec{E}_{1}+\vec{P}_{1}+\vec{P}_{a 1}
\end{aligned}
$$

Measure Created Photon

$$
\nabla \cdot \vec{D}_{1}=\rho_{e_{1}}
$$

$\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}$
$\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)$
$-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r y} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$.

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Constitutive Relations(Include Matter)
$\nabla \times \vec{H}_{1}-\partial_{t} \vec{D}_{1}=\vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$,

Measure Created Photon

$$
\begin{aligned}
& \nabla \cdot \vec{D}_{1}=\rho_{e_{1}} \\
& \nabla \times \vec{H}_{1}-\partial_{t} \vec{D}_{1}=\vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
\end{aligned}
$$

Constitutive Relations(Include Matter)

$\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}$
$\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)$
$-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r \gamma} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$.

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{e}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Effective Magnetisation and Polarisation

$$
\begin{gathered}
\vec{H}_{1}(\vec{r}, t)=\frac{\vec{B}_{1}}{\mu_{0}}-\vec{M}_{1}-\overleftrightarrow{M}_{a 1} ; \\
\left.\vec{D}_{1}(\vec{r}, t)=\epsilon_{0} \vec{E}_{1}+\vec{P}_{1}+\widehat{P}_{a 1}\right) \\
\vec{M}_{a 1}=-g_{a r r} a(t) c \epsilon_{0} \vec{E}_{0}(\vec{r}, t) \\
\frac{1}{\epsilon_{0}} \vec{P}_{a 1}=-g_{a r r} a(t) c \vec{B}_{0}(\vec{r}, t)
\end{gathered}
$$

Measure Created Photon

$$
\nabla \cdot \vec{D}_{1}=\rho_{e_{1}}
$$

Constitutive Relations(Include Matter)
$\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}$
$\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)$
$-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r \gamma} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$.

Effective Magnetisation and Polarisation

$$
\begin{aligned}
& \nabla \times \vec{H}_{1}-\partial_{t} \vec{D}_{1}=\vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
\end{aligned}
$$

$$
\begin{gathered}
\vec{H}_{1}(\vec{r}, t)=\frac{\vec{B}_{1}}{\mu_{0}}-\vec{M}_{1}-\widehat{M}_{a 1} ; \\
\vec{D}_{1}(\vec{r}, t)=\epsilon_{0} \vec{E}_{1}+\vec{P}_{1}+\widehat{P}_{a 1} \\
\vec{M}_{a 1}=-g_{a r y} a(t) c \epsilon_{0} \vec{E}_{0}(\vec{r}, t) \\
\frac{1}{\epsilon_{0}} \vec{P}_{a 1}=-g_{a r y} a(t) c \vec{B}_{0}(\vec{r}, t)
\end{gathered}
$$

$$
\nabla \times \vec{D}_{1}(\vec{r}, t)=-\partial_{t} \vec{B}_{1}(\vec{r}, t)+\nabla \times\left(\vec{P}_{1}+\vec{P}_{a 1}\right)
$$

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Measure Created Photon

$\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}$
$\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a r \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)$
$-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$.

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$$
\begin{array}{lc}
\nabla \cdot \vec{D}_{1}=\rho_{e_{1}} & \begin{array}{c}
\text { Constitutive Relations(Include Matter) } \\
\text { Effective Magnetisation and Polarisation }
\end{array} \\
\nabla \times \vec{H}_{1}-\partial_{t} \vec{D}_{1}=\vec{J}_{e_{1}} & \vec{H}_{1}(\vec{r}, t)=\frac{\vec{B}_{1}}{\mu_{0}}-\vec{M}_{1}-\vec{M}_{a 1} ; \\
\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 & \vec{D}_{1}(\vec{r}, t)=\epsilon_{0} \vec{E}_{1}+\vec{P}_{1}+\vec{P}_{a 1} \\
\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0, & \vec{M}_{a 1}=-g_{a r r} a(t) c \epsilon_{0} \vec{E}_{0}(\vec{r}, t) \\
& \frac{1}{\epsilon_{0}} \vec{P}_{a 1}=-g_{a r y} a(t) c \vec{B}_{0}(\vec{r}, t)
\end{array}
$$

$$
\nabla \times \vec{D}_{1}(\vec{r}, t)=-\partial_{t} \vec{B}_{1}(\vec{r}, t)+\nabla \times\left(\vec{P}_{1}+\vec{P}_{a 1}\right)
$$

$$
\nabla \times \vec{P}_{a 1} \neq 0=-g_{a r \gamma} a(t) c \nabla \times \vec{B}_{0}(\vec{r}, t) \quad(\nabla a=0)
$$

Measure Created Photon

$\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}$
$\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a r \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)$
$-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a r \gamma} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}$
$\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0$
$\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0$.

$$
\begin{aligned}
& \nabla \cdot \vec{D}_{1}=\rho_{e_{1}} \\
& \nabla \times \vec{H}_{1}-\partial_{t} \vec{D}_{1}=\vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
\end{aligned}
$$

Constitutive Relations(Include Matter) Effective Magnetisation and Polarisation

$$
\begin{gathered}
\vec{H}_{1}(\vec{r}, t)=\frac{\vec{B}_{1}}{\mu_{0}}-\vec{M}_{1}-\overparen{M_{a 1}} ; \\
\vec{D}_{1}(\vec{r}, t)=\epsilon_{0} \vec{E}_{1}+\vec{P}_{1}+\overparen{P}_{a 1} \\
\vec{M}_{a 1}=-g_{a r y} a(t) c \epsilon_{0} \vec{E}_{0}(\vec{r}, t) \\
\frac{1}{\epsilon_{0}} \vec{P}_{a 1}=-g_{a r y} a(t) c \vec{B}_{0}(\vec{r}, t)
\end{gathered}
$$

$$
\begin{aligned}
& \nabla \times \vec{D}_{1}(\vec{r}, t)=-\partial_{t} \vec{B}_{1}(\vec{r}, t)+\nabla \times\left(\vec{P}_{1}+\vec{P}_{a 1}\right) \\
& \nabla \times \vec{P}_{a 1} \neq 0=-g_{a y \gamma} a(t) c \nabla \times \vec{B}_{0}(\vec{r}, t) \quad(\nabla a=0)
\end{aligned}
$$

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

Measure Created Photon

$$
\begin{aligned}
& \nabla \cdot \vec{D}_{1}=\rho_{e_{1}} \\
& \nabla \times \vec{H}_{1}-\partial_{t} \vec{D}_{1}=\vec{J}_{e_{1}} \\
& \nabla \cdot \vec{B}_{1}(\vec{r}, t)=0 \\
& \nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
\end{aligned}
$$

Constitutive Relations(Include Matter) Effective Magnetisation and Polarisation

$$
\nabla \cdot\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(t) c \vec{B}_{0}(\vec{r}, t)\right)=\frac{\rho_{e_{1}}}{\epsilon_{0}}
$$

$$
\nabla \times\left(\vec{B}_{1}(\vec{r}, t)+\frac{g_{a \gamma \gamma} a(t)}{c} \vec{E}_{0}(\vec{r}, t)\right)
$$

$$
-\frac{1}{c^{2}} \partial_{t}\left(\vec{E}_{1}(\vec{r}, t)-g_{a \gamma \gamma} a(\vec{r}, t) c \vec{B}_{0}(\vec{r}, t)\right)=\mu_{0} \vec{J}_{e_{1}}
$$

$$
\begin{aligned}
& \vec{H}_{1}(\vec{r}, t)=\frac{\vec{B}_{1}}{\mu_{0}}-\vec{M}_{1}-\vec{M}_{a 1} \\
& \vec{D}_{1}(\vec{r}, t)=\epsilon_{0} \vec{E}_{1}+\vec{P}_{1}+\vec{P}_{a 1} \\
& \vec{M}_{a 1}=-g_{a y \gamma} a(t) c \epsilon_{0} \vec{E}_{0}(\vec{r}, t) \\
& \frac{1}{\epsilon_{0}} \vec{P}_{a 1}=-g_{a r y} a(t) c \vec{B}_{0}(\vec{r}, t)
\end{aligned}
$$

$$
\nabla \cdot \vec{B}_{1}(\vec{r}, t)=0
$$

$$
\nabla \times \vec{E}_{1}(\vec{r}, t)+\partial_{t} \vec{B}_{1}(\vec{r}, t)=0
$$

$$
\begin{aligned}
& \nabla \times \vec{D}_{1}(\vec{r}, t)=-\partial_{t} \vec{B}_{1}(\vec{r}, t)+\nabla \times\left(\vec{P}_{1}+\vec{P}_{a 1}\right) \\
& \nabla \times \vec{P}_{a 1} \neq 0=-g_{a r y} a(t) c \nabla \times \vec{B}_{0}(\vec{r}, t) \quad(\nabla a=0)
\end{aligned}
$$

Applied Background Field

$$
\begin{aligned}
& \nabla \times \vec{B}_{0}=\mu_{0} \epsilon_{0} \partial_{t} \vec{E}_{0}+\mu_{0} \vec{J}_{e_{0}} \\
& \nabla \times \vec{E}_{0}=-\partial_{t} \vec{B}_{0} \\
& \nabla \cdot \vec{B}_{0}=0 \\
& \nabla \cdot \vec{E}_{0}=\epsilon_{0}^{-1} \rho_{e_{0}}
\end{aligned}
$$

$$
\vec{J}_{a b}(\vec{r}, t)=\frac{\partial \vec{P}_{a 1}(\vec{r}, t)}{\partial t}
$$

$$
\underset{B_{0}(\vec{r})}{\underbrace{\gamma_{0}}_{t}}
$$

Few thoughts on θ and the electric dipole moments

Ariel Zhitnitsky ${ }^{*}$

Modified axion electrodynamics as impressed electromagnetic sources through oscillating background polarization and magnetization

Michael E. Tobar*, Ben T. McAllister, Maxim Goryachev
ARC Centre of Excellence For Engineered Quantum Systems, Department of Physics, School of Physics, Mathematics and Computing, University of ARC Centre of Excellence For Engineered Quantum Systems, Departme
Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

Physics of the Dark Universe 30 (2020) 100624

Electric polarization as a nonquantized topological response and boundary Luttinger theorem
Xue-Yang Song $\oplus,{ }^{1,2}$ Yin-Chen He $\oplus,{ }^{2}$ Ashvin Vishwanath, ${ }^{1}$ and Chong Wang ${ }^{2}$ ${ }^{1}$ Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
Department of Physics, Harvara University, Cambridge, Massachusetts 05138, USA
${ }^{2}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
(T) (Received 22 February 2021; accepted 5 March 2021; published 2 April 2021)

Broadband electrical action sensing techniques with conducting wires
for low-mass dark matter axion detection
Michael E. Tobar*, Ben T. McAllister, Maxim Goryachev
ARC Centre of Excellence For Engineered Quantum Systems, Department of Physics, University of Western Australia, 35 Stirling ARC Centre of Excellence For Engineerer
Highway, Crawley WA 6009, Australia

Emergent electric field from magnetic resonances in a one-dimensional chiral magnet

```
Kotaro Shimizu, ', Shun Okumura, ,}\mp@subsup{}{}{1}\mathrm{ Yasuyuki Kato,, and Yukitoshi Motome }\mp@subsup{}{}{1
    ' Department of Applied Physics,The University of Tokyo,Tokyo 113-8656, Japan
    (Dated: July 18, 2023)
Kotaro Shimizu, \({ }^{1}\) Shun Okumura, \({ }^{1}\) Yasuyuki Kato, \({ }^{1}\) and Yukitoshi Motome
\({ }^{1}\) Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan (Dated: July 18, 2023)
```

The emergent electric field (EEF) is a fictitious electric field acting on conduction electrons through the Berry phase mechanism.

DC Magnetic Haloscopes

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\lambda_{a}>d_{e x p} \quad \lambda_{a} \sim d_{e x p} \quad \lambda_{a}<d_{e x p}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\lambda_{a}>d_{\text {exp }} \quad \lambda_{a} \sim d_{\text {exp }} \quad \lambda_{a}<d_{\text {exp }}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\lambda_{a}=\frac{h}{m_{a} c} \xrightarrow{\lambda_{a}>d_{e x p}} \quad \lambda_{a} \sim d_{e x p} \quad \lambda_{a}<d_{\text {exp }} m_{a} \quad \omega_{a} \approx \frac{m_{a} c^{2}}{\hbar}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\begin{array}{lll}
\lambda_{a}=\frac{h}{m_{a} c} & \stackrel{\lambda_{a} \sim d_{e x p}}{\lambda_{a}>d_{e x p}} \stackrel{\lambda_{a}<d_{e x p}}{\longleftrightarrow} m_{a} \xrightarrow{\omega_{a} \approx \frac{m_{a} c^{2}}{\hbar}} \\
& \left.m_{[}[e]\right] \left.\equiv \frac{m_{d}}{}[k] \right\rvert\, c^{2} \\
q_{e}
\end{array}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\begin{aligned}
& \lambda_{a}>d_{\text {exp }} \quad \lambda_{a} \sim d_{\text {exp }} \quad \lambda_{a}<d_{\text {exp }} \\
& \lambda_{a}=\frac{h}{m_{a} c} \\
& \longleftrightarrow m_{a} \\
& \omega_{a} \approx \frac{m_{a} c^{2}}{\hbar} \\
& m_{a}[e V] \equiv \frac{m_{a}[k g] c^{2}}{q_{e}} \\
& 1 \mathrm{eV}=1.8 \times 10^{-36}[\mathrm{~kg}]
\end{aligned}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\begin{aligned}
& \lambda_{a}>d_{\text {exp }} \quad \lambda_{a} \sim d_{\text {exp }} \quad \lambda_{a}<d_{\text {exp }} \\
& \lambda_{a}=\frac{h}{m_{a} c} \\
& \lambda_{a}>d_{\exp } \quad \lambda_{a} d_{\exp } \quad \lambda_{a}<d_{\exp } \\
& \text { - Lumped Element } \\
& \omega_{a} \approx \frac{m_{a} c^{2}}{\hbar} \\
& \text { Reactive (broad } \\
& \text { band) } \\
& m_{a}[e V] \equiv \frac{m_{a}[k g] c^{2}}{q_{e}} \\
& 1 \mathrm{eV}=1.8 \times 10^{-36}[\mathrm{~kg}]
\end{aligned}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\begin{aligned}
& \lambda_{a}>d_{\text {exp }} \quad \lambda_{a} \sim d_{\text {exp }} \quad \lambda_{a}<d_{\text {exp }}
\end{aligned}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\begin{aligned}
& \lambda_{a}>d_{\text {exp }} \quad \lambda_{a} \sim d_{\text {exp }} \quad \lambda_{a}<d_{\text {exp }} \\
& \lambda_{a}=\frac{h}{m_{a} c} \stackrel{\exp }{\longleftrightarrow} \stackrel{\text { Rumped Element }}{\longleftrightarrow} m_{a} \omega_{a} \approx \frac{m_{a} c^{2}}{\hbar} \\
& \text { Reactive (broad } \\
& \text { band) } \\
& \text { (enhanced } \\
& \text { by Q narrow } \\
& \text { band) } \\
& \text { - Propagative } \\
& \text { (broad band) } \\
& m_{a}[e V] \equiv \frac{m_{a}[k g] c^{2}}{q_{e}} \\
& 1 \mathrm{eV}=1.8 \times 10^{-36}[\mathrm{~kg}]
\end{aligned}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\lambda_{a} \sim d_{\text {exp }} \sim 1 \mathrm{~cm} \rightarrow 1 \mathrm{~m}
$$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\begin{aligned}
& \lambda_{a}>d_{\text {exp }} \quad \lambda_{a} \sim d_{\text {exp }} \quad \lambda_{a}<d_{\text {exp }} \\
& \lambda_{a}=\frac{h}{m_{a} c} \stackrel{\exp }{\longleftrightarrow} \stackrel{\text { Rumped Element }}{\longleftrightarrow} m_{a} \omega_{a} \approx \frac{m_{a} c^{2}}{\hbar} \\
& \text { Reactive (broad } \\
& \text { band) } \\
& \text { (enhanced } \\
& \text { by Q narrow } \\
& \text { band) } \\
& \text { - Propagative } \\
& \text { (broad band) } \\
& m_{a}[e V] \equiv \frac{m_{a}[k g] c^{2}}{q_{e}} \\
& 1 \mathrm{eV}=1.8 \times 10^{-36}[\mathrm{~kg}]
\end{aligned}
$$

$\lambda_{a} \sim d_{\text {exp }} \sim 1 \mathrm{~cm} \rightarrow 1 \mathrm{~m} \quad \frac{\omega_{a}}{2 \pi} \sim 300 \mathrm{MHz} \rightarrow 30 \mathrm{GHz}$

DC Magnetic Haloscopes

- Axions convert into photons in presence of strong magnetic field: Mass is unknown
- So: narrowband photon signal of an unknown frequency is generated (need to scan frequency)
- Three regimes of haloscope detector

$$
\begin{aligned}
& \lambda_{a}>d_{\text {exp }} \quad \lambda_{a} \sim d_{\text {exp }} \quad \lambda_{a}<d_{\text {exp }} \\
& \lambda_{a}=\frac{h}{m_{a} c} \xrightarrow{\longleftrightarrow} \stackrel{\text { Lumped Element •Resonant }}{\longleftrightarrow} m_{a} \omega_{a} \approx \frac{m_{a} c^{2}}{\hbar} \\
& \text { Reactive (broad } \\
& \text { band) } \\
& \text { (enhanced } \\
& \text { - Propagative } \\
& \text { (broad band) } \\
& \text { by Q narrow } \\
& \text { band) } \\
& m_{a}[e V] \equiv \frac{m_{a}[k g] c^{2}}{q_{e}} \\
& 1 \mathrm{eV}=1.8 \times 10^{-36}[\mathrm{~kg}] \\
& \lambda_{a} \sim d_{\text {exp }} \sim 1 \mathrm{~cm} \rightarrow 1 \mathrm{~m} \quad \frac{\omega_{a}}{2 \pi} \sim 300 \mathrm{MHz} \rightarrow 30 \mathrm{GHz} \quad m_{a} \sim 1 \mu \mathrm{eV} \rightarrow 100 \mu \mathrm{eV}
\end{aligned}
$$

DC Magnetic Haloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

DC Magnetic Haloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

Low Mass: Lumped Element

Reactive	300 MHz	30 GHz				
$\lambda_{a}>d_{\text {exp }}$	1.25×10^{-6}	$\lambda_{a} \sim d_{\text {exp }}$	1.25×10^{-4}	$\lambda_{a}<d_{\text {exp }}$		$\frac{\omega_{a}}{2 \pi} \mathrm{~Hz}$
:---						
$m_{a} \mathrm{eV}$						

ADMX SLIC
RE-ENTRANT CAVITY
ABRACADABRA
SHAFT
DM RADIO

DC Magnetic Maloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

Low Mass: Lumped Element

Reactive	300 MHz	30 GHz				
$\lambda_{a}>d_{\text {exp }}$	1.25×10^{-6}	$\lambda_{a} \sim d_{\text {exp }}$	1.25×10^{-4}	$\lambda_{a}<d_{\text {exp }}$		$\frac{\omega_{a}}{2 \pi} \mathrm{~Hz}$
:---						
$m_{a} \mathrm{eV}$						

ADMX SLIC
RE-ENTRANT CAVITY
ABRACADABRA
SHAFT
DM RADIO

DC Magnetic Maloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

Low Mass: Lumped Element

Reactive	300 MHz	30 GHz				
$\lambda_{a}>d_{\text {exp }}$	1.25×10^{-6}	$\lambda_{a} \sim d_{\text {exp }}$	1.25×10^{-4}	$\lambda_{a}<d_{\text {exp }}$		$\frac{\omega_{a}}{2 \pi} \mathrm{~Hz}$
:---						
$m_{a} \mathrm{eV}$						

ADMX SLIC
RE-ENTRANT CAVITY
ABRACADABRA
SHAFT
DM RADIO

DC Magnetic Haloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

Middle Mass: Resonant Cavity					
Low Mass: Lumped Element Reactive	300 MHz	tive and Dissipative	30 GHz		$\frac{\omega_{a}}{2 \pi} \mathrm{~Hz}$
$\lambda_{a}>d_{\text {exp }}$	1.25×10^{-6}	$\lambda_{a} \sim d_{\text {exp }}$	1.25×10^{-4}	$\lambda_{a}<d_{\text {exp }}$	$m_{a} \mathrm{eV}$
ADMX SLIC	ADMX				
RE-ENTRANT CAVITY	CULTASK				
ABRACADABRA	ORGAN				
SHAFT	QUAX				
DM RADIO	RADES				

DC Magnetic Haloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

DC Magnetic Haloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

DC Magnetic Haloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

DC Magnetic Maloscopes Type Depends on Axion Compton Wavelength $\quad \lambda_{a}=\frac{h}{c m_{a}}$

DC Magnetic Haloscopes Type Depends on Axion Compton Wavelength $\lambda_{a}=\frac{h}{c m_{a}}$

POYNTING THEOREM

- The basic conservation law for electromagnetic energy (EM)
- The basic conservation law for electromagnetic energy (EM)
- Defines the balance of EM Complex power given 1) Sources, 2) Storage, 3) Dissipation, 4) Radiation

POYNTING THEOREM

- The basic conservation law for electromagnetic energy (EM)
- Defines the balance of EM Complex power given 1) Sources, 2) Storage, 3) Dissipation, 4) Radiation - The direction and density of EM power flow at a point is defined by the Poynting vector, $\vec{S}(t)\left[\mathrm{W} / \mathrm{m}^{2}\right]$

POYNTING THEOREM

- The basic conservation law for electromagnetic energy (EM)
- Defines the balance of EM Complex power given 1) Sources, 2) Storage, 3) Dissipation, 4) Radiation - The direction and density of EM power flow at a point is defined by the Poynting vector, $\vec{S}(t)\left[\mathrm{W} / \mathrm{m}^{2}\right]$

Instantaneous Poynting vector

$$
\begin{gathered}
\vec{S}_{1}(t)=\frac{1}{\mu_{0}} \vec{E}_{1}(t) \times \vec{B}_{1}(t)=\frac{1}{2}\left(\mathbf{E}_{1} e^{-j \omega_{1} t}+\mathbf{E}_{1}^{*} e^{j \omega_{1} t}\right) \times \frac{1}{2 \mu_{0}}\left(\mathbf{B}_{1} e^{-j \omega_{1} t}+\mathbf{B}_{1}^{*} e^{j \omega_{1} t}\right) \\
=\frac{1}{2 \mu_{0}} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)+\frac{1}{2 \mu_{0}} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1} e^{-j 2 \omega_{1} t}\right), \\
\left\langle\vec{S}_{1}\right\rangle=\frac{1}{T} \int_{0}^{T} \vec{S}_{1}(t) d t=\frac{1}{T} \int_{0}^{T}\left[\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)+\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1} e^{-2 j \omega t}\right)\right] d t=\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)
\end{gathered}
$$

POYNTING THEOREM

- The basic conservation law for electromagnetic energy (EM)
- Defines the balance of EM Complex power given 1) Sources, 2) Storage, 3) Dissipation, 4) Radiation
- The direction and density of EM power flow at a point is defined by the Poynting vector, $\vec{S}(t)\left[\mathrm{W} / \mathrm{m}^{2}\right]$

Instantaneous Poynting vector

$$
\begin{gathered}
\vec{S}_{1}(t)=\frac{1}{\mu_{0}} \vec{E}_{1}(t) \times \vec{B}_{1}(t)=\frac{1}{2}\left(\mathbf{E}_{1} e^{-j \omega_{1} t}+\mathbf{E}_{1}^{*} e^{j \omega_{1} t}\right) \times \frac{1}{2 \mu_{0}}\left(\mathbf{B}_{1} e^{-j \omega_{1} t}+\mathbf{B}_{1}^{*} e^{j \omega_{1} t}\right) \\
=\frac{1}{2 \mu_{0}} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)+\frac{1}{2 \mu_{0}} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1} e^{-j 2 \omega_{1} t}\right), \\
\left\langle\vec{S}_{1}\right\rangle=\frac{1}{T} \int_{0}^{T} \vec{S}_{1}(t) d t=\frac{1}{T} \int_{0}^{T}\left[\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)+\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1} e^{-2 j \omega t}\right)\right] d t=\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)
\end{gathered}
$$

Complex Poynting vector

- The corresponding phasor form of the Poynting vector

$$
\begin{gathered}
\mathbf{S}_{1}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \times \mathbf{B}_{1}^{*} \text { and } \mathbf{S}_{1}^{*}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \times \mathbf{B}_{1}, \\
\operatorname{Re}\left(\mathbf{S}_{1}\right)=\frac{1}{2}\left(\mathbf{S}_{1}+\mathbf{S}_{1}^{*}\right) \text { and } j \operatorname{Im}\left(\mathbf{S}_{1}\right)=\frac{1}{2}\left(\mathbf{S}_{1}-\mathbf{S}_{1}^{*}\right) .
\end{gathered}
$$

$P_{a v}=\frac{1}{2} \operatorname{Re} \oint_{S_{c}}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \cdot d \mathbf{s}$
Average radiated power outside volume

Poynting vector controversy in axion modified electrodynamics

Michael E. Tobar®,* Ben T. McAllister, and Maxim Goryachev
ARC Centre of Excellence for Engineered Quantum Systems and ARC Centre of Excellence for Dar Matter Particle Physics, Department of Physics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia

Sensitivity of a Resonant Haloscope

$P_{a v}=\frac{1}{2} \operatorname{Re} \oint_{S_{c}}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \cdot d \mathbf{s}$
Average radiated power outside volume

Poynting vector controversy in axion modified electrodynamics
Michael E. Tobar®,, Ben T. McAllister, and Maxim Goryachev
ARC Centre of Excellence for Engineered Quantum Systems and ARC Centre of Excellence for Dar Matter Particle Physics, Department of Physics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
(ब) (Received 9 September 2021; accepted 28 January 2022; published 15 February 2022)

$$
\begin{aligned}
\mathbf{S}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1} & \times \mathbf{B}_{1}^{*} \text { and } \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \times \mathbf{B}_{1} \\
& \nabla \cdot \mathbf{S}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot\left(\nabla \times \mathbf{E}_{1}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \cdot\left(\nabla \times \mathbf{B}_{1}^{*}\right) \\
& \nabla \cdot \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1}^{*} \times \mathbf{B}_{1}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1} \cdot\left(\nabla \times \mathbf{E}_{1}^{*}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \cdot\left(\nabla \times \mathbf{B}_{1}\right)
\end{aligned}
$$

On resonance: Real part of Complex Poynting Theorem $=0$ for closed system

$$
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} g_{a r y} \epsilon_{0} c}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \mathbf{B}_{0}\right) d \tau-\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
$$

$P_{s} \quad$ Axion power input
P_{d} Cavity power distribution

Sensitivity of a Resonant Haloscope

$P_{a v}=\frac{1}{2} \operatorname{Re} \oint_{S_{c}}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \cdot d \mathbf{s}$
Average radiated power outside volume

Poynting vector controversy in axion modified electrodynamics
Michael E. Tobar®,, Ben T. McAllister, and Maxim Goryachev
ARC Centre of Excellence for Engineered Quantum Systems and ARC Centre of Excellence for Dart Matter Particle Physics, Department of Physics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
(ब) (Received 9 September 2021; accepted 28 January 2022; published 15 February 2022)

$$
\begin{aligned}
& \mathbf{S}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \times \mathbf{B}_{1}^{*} \text { and } \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \times \mathbf{B}_{1} \\
& \nabla \cdot \mathbf{S}^{2}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot\left(\nabla \times \mathbf{E}_{1}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \cdot\left(\nabla \times \mathbf{B}_{1}^{*}\right) \\
& \nabla \cdot \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1}^{*} \times \mathbf{B}_{1}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1} \cdot\left(\nabla \times \mathbf{E}_{1}^{*}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \cdot\left(\nabla \times \mathbf{B}_{1}\right)
\end{aligned}
$$

On resonance: Real part of Complex Poynting Theorem $=0$ for closed system

$$
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} g_{a r y} \epsilon_{0} c}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \mathbf{B}_{0}\right) d \tau-\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
$$

$P_{s} \quad$ Axion power input
P_{d} Cavity power distribution

$$
P_{d}=\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau=\frac{\omega_{1} \epsilon_{0}}{2 Q_{1}} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d V=\frac{\omega_{1} U_{1}}{Q_{1}}
$$

Sensitivity of a Resonant Haloscope

$P_{a v}=\frac{1}{2} \operatorname{Re} \oint_{S_{c}}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \cdot d \mathbf{s}$
Average radiated power outside volume

Poynting vector controversy in axion modified electrodynamics
Michael E. Tobar®,, Ben T. McAllister, and Maxim Goryachev
ARC Centre of Excellence for Engineered Quantum Systems and ARC Centre of Excellence for Dart Matter Particle Physics, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley, Western Australia 6009, Australia
(ब) (Received 9 September 2021; accepted 28 January 2022; published 15 February 2022)

$$
\begin{aligned}
& \mathbf{S}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \times \mathbf{B}_{1}^{*} \text { and } \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \times \mathbf{B}_{1} \\
& \nabla \cdot \mathbf{S}^{2}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot\left(\nabla \times \mathbf{E}_{1}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \cdot\left(\nabla \times \mathbf{B}_{1}^{*}\right) \\
& \nabla \cdot \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1}^{*} \times \mathbf{B}_{1}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1} \cdot\left(\nabla \times \mathbf{E}_{1}^{*}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \cdot\left(\nabla \times \mathbf{B}_{1}\right)
\end{aligned}
$$

On resonance: Real part of Complex Poynting Theorem $=0$ for closed system

$$
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} g_{a r y} \epsilon_{0} c}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \mathbf{B}_{0}\right) d \tau-\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
$$

$P_{s} \quad$ Axion power input
$P_{d}=\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau=\frac{\omega_{1} \epsilon_{0}}{2 Q_{1}} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d V=\frac{\omega_{1} U_{1}}{Q_{1}}$
P_{d} Cavity power distribution

$$
P_{a 1}=\frac{\omega_{a} g_{a \gamma \gamma} a_{0} \epsilon_{0} c}{2 Q_{1}} \int\left(\operatorname{Re}\left(\mathbf{E}_{1}\right) \cdot \operatorname{Re}\left(\mathbf{B}_{0}\right)\right) d \tau=P_{d}=\frac{\omega_{1} U_{1}}{Q_{1}}
$$

Sensitivity of a Resonant Haloscope

$P_{a v}=\frac{1}{2} \operatorname{Re} \oint_{S_{c}}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \cdot d \mathbf{s}$
Average radiated power outside volume

Poynting vector controversy in axion modified electrodynamics
Michael E. Tobar®,, Ben T. McAllister, and Maxim Goryachev
ARC Centre of Excellence for Engineered Quantum Systems and ARC Centre of Excellence for Dart Matter Particle Physics, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley, Western Australia 6009, Australia
(ब) (Received 9 September 2021; accepted 28 January 2022; published 15 February 2022)

$$
\begin{aligned}
& \mathbf{S}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \times \mathbf{B}_{1}^{*} \text { and } \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \times \mathbf{B}_{1} \\
& \nabla \cdot \mathbf{S}^{2}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot\left(\nabla \times \mathbf{E}_{1}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \cdot\left(\nabla \times \mathbf{B}_{1}^{*}\right) \\
& \nabla \cdot \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1}^{*} \times \mathbf{B}_{1}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1} \cdot\left(\nabla \times \mathbf{E}_{1}^{*}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \cdot\left(\nabla \times \mathbf{B}_{1}\right)
\end{aligned}
$$

On resonance: Real part of Complex Poynting Theorem $=0$ for closed system

$$
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} g_{a r y} \epsilon_{0} c}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \mathbf{B}_{0}\right) d \tau-\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
$$

$P_{s} \quad$ Axion power input

$$
\begin{gathered}
P_{d}=\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau=\frac{\omega_{1} \epsilon_{0}}{2 Q_{1}} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d V=\frac{\omega_{1} U_{1}}{Q_{1}} \quad P_{a 1}=\frac{\omega_{a g a \gamma \gamma} a_{0} \epsilon_{0} c}{2 Q_{1}} \int\left(\operatorname{Re}\left(\mathbf{E}_{1}\right) \cdot \operatorname{Re}\left(\mathbf{B}_{0}\right)\right) d \tau=P_{d}=\frac{\omega_{1} U_{1}}{Q_{1}} \\
P_{a 1}=\omega_{a} Q U_{1}=g_{a \gamma \gamma}^{2}\left\langle a_{0}\right\rangle^{2} \omega_{a} Q_{1} \epsilon_{0} c^{2} B_{0}^{2} V_{1} C_{1}, \quad C_{1}=\frac{\left(\int \vec{B}_{0} \cdot \operatorname{Re}\left(\mathbf{E}_{1}\right) d \tau\right)^{2}}{},
\end{gathered}
$$

P_{d} Cavity power distribution

Sensitivity of a Resonant Haloscope

$P_{a v}=\frac{1}{2} \operatorname{Re} \oint_{S_{c}}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \cdot d \mathbf{s}$
Average radiated power outside volume

$$
\begin{aligned}
\oint j \operatorname{Im}(\mathbf{S}) \cdot \hat{n} d s & =\int\left(\frac{j \omega_{1}}{2}\left(\frac{1}{\mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\epsilon_{0} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)\right. \\
& +\frac{j \omega_{a}}{4} \epsilon_{0} g_{a r \gamma} \overrightarrow{\boldsymbol{B}}_{0} \cdot\left(\tilde{a}^{*} \mathbf{E}_{1}+\tilde{a} \mathbf{E}_{1}^{*}\right) \\
& \left.\left.-\frac{1}{4}\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}-\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right)\right)\right) d \tau
\end{aligned}
$$

Resonant Haloscope, on resonance,

$$
\text { Reactive Power }=0
$$

Poynting vector controversy in axion modified electrodynamics
Michael E. Tobar®,* Ben T. McAllister, and Maxim Goryachev
ARC Centre of Excellence for Engineered Quantum Systems and ARC Centre of Excellence for Dart Matter Particle Physics, Department of Physics, University of Western Australia,

35 Stirling Highway, Crawley, Western Australia 6009, Australia
(®) (Received 9 September 2021; accepted 28 January 2022; published 15 February 2022)

$$
\begin{aligned}
\mathbf{S}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1} & \times \mathbf{B}_{1}^{*} \text { and } \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \times \mathbf{B}_{1} \\
& \nabla \cdot \mathbf{S}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1} \times \mathbf{B}_{1}^{*}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot\left(\nabla \times \mathbf{E}_{1}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1} \cdot\left(\nabla \times \mathbf{B}_{1}^{*}\right) \\
& \nabla \cdot \mathbf{S}^{*}=\frac{1}{2 \mu_{0}} \nabla \cdot\left(\mathbf{E}_{1}^{*} \times \mathbf{B}_{1}\right)=\frac{1}{2 \mu_{0}} \mathbf{B}_{1} \cdot\left(\nabla \times \mathbf{E}_{1}^{*}\right)-\frac{1}{2 \mu_{0}} \mathbf{E}_{1}^{*} \cdot\left(\nabla \times \mathbf{B}_{1}\right)
\end{aligned}
$$

On resonance: Real part of Complex Poynting Theorem $=0$ for closed system

$$
\oint \operatorname{Re}(\mathbf{S}) \cdot \hat{n} d s=\frac{j \omega_{a} g_{a r y} \epsilon_{0} c}{4} \int\left(\mathbf{E}_{1} \cdot \tilde{a}^{*} \mathbf{B}_{0}^{*}-\mathbf{E}_{1}^{*} \cdot \tilde{a} \mathbf{B}_{0}\right) d \tau-\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau
$$

$P_{s} \quad$ Axion power input
P_{d} Cavity power distribution

$$
P_{d}=\frac{1}{4} \int\left(\mathbf{E}_{1} \cdot \mathbf{J}_{e 1}^{*}+\mathbf{E}_{1}^{*} \cdot \mathbf{J}_{e 1}\right) d \tau=\frac{\omega_{1} \epsilon_{0}}{2 Q_{1}} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d V=\frac{\omega_{1} U_{1}}{Q_{1}} \quad P_{a 1}=\frac{\omega_{a} g_{a \gamma \gamma} a_{0} \epsilon_{0} c}{2 Q_{1}} \int\left(\operatorname{Re}\left(\mathbf{E}_{1}\right) \cdot \operatorname{Re}\left(\mathbf{B}_{0}\right)\right) d \tau=P_{d}=\frac{\omega_{1} U_{1}}{Q_{1}}
$$

$$
P_{a 1}=\omega_{a} Q U_{1}=g_{a r \gamma}^{2}\left\langle a_{0}\right\rangle^{2} \omega_{a} Q_{1} \epsilon_{0} c^{2} B_{0}^{2} V_{1} C_{1},
$$

$$
C_{1}=\frac{\left(\int \vec{B}_{0} \cdot \operatorname{Re}\left(\mathbf{E}_{1}\right) d \tau\right)^{2}}{B_{0}^{2} V_{1} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d \tau},
$$

IMAGINARY POYNTING VECTOR INSIDE CAVITY

$$
\text { S~-j } \tilde{E}_{z}=\tilde{E}_{0} J_{0}\left(\frac{\chi_{0 n}}{r_{c} r}\right)
$$

$T M_{0 n 0}$

$$
\tilde{H}_{\phi}=-j \tilde{E}_{0}(\omega \epsilon) \frac{r_{c}}{\chi_{0 n}} J_{0}^{\prime}\left(\frac{\chi_{0 n}}{r_{c}} r\right)
$$

$T M_{010}$

$T M_{030}$

IMAGINARY POYNTING VECTOR INSIDE CAVITY

$$
\tilde{H}_{\phi}=-j \tilde{E}_{0}(\omega \epsilon) \frac{r_{c}}{\chi_{0 n}} J_{0}^{\prime}\left(\frac{\chi_{0 n}}{r_{c}} r\right)
$$

$T M_{010}$

$$
\text { S } \quad \tilde{E}_{z}=\tilde{E}_{0} J_{c}
$$

$$
\tilde{E}_{z}=\tilde{E}_{0} J_{0}\left(\frac{\chi_{0 n}}{r_{c}} r\right)
$$

$$
Q=\omega_{1} \frac{U_{\text {tot }}}{P_{d}}=2 \pi \frac{\text { stored energy }}{\text { energy dissipated during one period }}
$$

$$
P_{d}=\frac{\omega_{1} U_{t o t}}{Q}
$$

Real Power Measurement, Absorbs Energy: $P_{a}=I_{0}^{2} R_{o}=\frac{V_{0}^{2}}{R_{0}}$

Resonator Measurement: Impedance match; set coupling =1; Take Photons from Source

Real Power Measurement, Absorbs Energy: $P_{a}=I_{0}^{2} R_{o}=\frac{V_{0}^{2}}{R_{0}}$

Resonator Measurement: Impedance match; set coupling =1; Take Photons from Source

Resonator Measurement: Impedance match; set coupling =1; Take Photons from Source

Reactive Power Measurement, Does Not Absorb Energy:

Resonator Measurement: Impedance match; set coupling =1; Take Photons from Source

Reactive Power Measurement, Does Not Absorb Energy:
Left eg. Inductive couple SQUID Amplifier (Current of Mag Flux)

Resonator Measurement: Impedance match; set coupling =1; Take Photons from Source

Reactive Power Measurement, Does Not Absorb Energy:
Left eg. Inductive couple SQUID Amplifier (Current of Mag Flux)
Right eg. Capacitive coupled High Impedance Amplifier (Voltage)

Resonator Measurement: Impedance match; set coupling =1; Take Photons from Source

Reactive Power Measurement, Does Not Absorb Energy:
Left eg. Inductive couple SQUID Amplifier (Current of Mag Flux)
Right eg. Capacitive coupled High Impedance Amplifier (Voltage)

Energy oscillates between Source and Capacitor

Reactive Power Measurement, Does Not Absorb Energy:
Left eg. Inductive couple SQUID Amplifier (Current of Mag Flux)
Right eg. Capacitive coupled High Impedance Amplifier (Voltage)

Energy oscillates between Source and Capacitor Do not destroy photons

Reactive Power Measurement, Does Not Absorb Energy:
Left eg. Inductive couple SQUID Amplifier (Current of Mag Flux)
Right eg. Capacitive coupled High Impedance Amplifier (Voltage)

Energy oscillates between Source and Capacitor Do not destroy photons

Reactive power does not propagate or dissipate out of the volume of the detector (ie. no loss): Oscillates in and out of volume

Reactive Power Measurement, Does Not Absorb Energy:
Left eg. Inductive couple SQUID Amplifier (Current of Mag Flux)
Right eg. Capacitive coupled High Impedance Amplifier (Voltage)

Energy oscillates between Source and Capacitor Do not destroy photons

Reactive power does not propagate or dissipate out of the volume of the detector (ie. no loss): Oscillates in and out of volume Does not need to be the order of the Compton wavelength in size (sub wavelength phenomena)

$\mathcal{H}_{\text {int }}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

DC

$\mathcal{H}_{\text {int }}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$
$\mathcal{H}_{\text {int }}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$
$\mathcal{H}_{\text {int }}=\epsilon_{0} c g_{a \gamma \gamma} \mathbf{} \mathbf{E} \cdot \mathbf{B}$

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$

Photon 0, Back ground DC B field of surrounding magnet

$\mathcal{H}_{\text {int }}=\epsilon_{0} c g_{a \gamma \gamma} \mathbf{a} \cdot \mathbf{B}$

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$

Photon 0, Back ground DC B field of surrounding magnet
eg.
-ADMX
-ORGAN (UWA) -CAPP
-HAYSTAC

Resonant Axion Haloscopes @ UWA

AC Frequency

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$
Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) -CAPP
-HAYSTAC

Resonant Axion Haloscopes @ UWA

$$
\mathcal{H}_{i n t}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}
$$

AC Frequency

AC Power
AXION FIELD

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$

Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) - CAPP
-HAYSTAC

Resonant Axion Haloscopes AC Frequency

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$
Photon 0, Back ground DC B field of surrounding magnet
eg.
-ADMX

- ORGAN (UWA)
- CAPP
-HAYSTAC

$\mathcal{H}_{\text {int }}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

AC Frequency

AC Power
AXION FIELD

- Use a mode 0 as the background "magnetic field" AC source
-Two modes in one cylindrical cavity

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$

Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) - CAPP
-HAYSTAC
$\mathcal{H}_{\text {int }}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

AC Frequency

AC Power
AXION FIELD

- Use a mode 0 as the background "magnetic field" AC source
-Two modes in one cylindrical cavity
- Upconversion limit $m_{a}=\left|f_{1}-f_{0}\right|+\delta f$

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$
Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) - CAPP
-HAYSTAC

Resonant Axion Haloscopes @ UWA

AC Frequency

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$
Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) - CAPP
-HAYSTAC

AC Power
AXION FIELD

- Use a mode 0 as the background "magnetic field" AC source
-Two modes in one cylindrical cavity
- Upconversion limit $m_{a}=\left|f_{1}-f_{0}\right|+\delta f$

Photon 1: Transverse Magnetic Mode
(Longitudinal Electric)

Resonant Axion Haloscopes @ UWA

AC Frequency

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$
Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) - CAPP
-HAYSTAC

AC Power
AXION FIELD

- Use a mode 0 as the background "magnetic field" AC source
-Two modes in one cylindrical cavity
- Upconversion limit $m_{a}=\left|f_{1}-f_{0}\right|+\delta f$

Photon 1: Transverse Magnetic Mode
(Longitudinal Electric)

Photon 0: Transverse
Electric Mode
(Longitudinal Magnetic)
$\mathcal{H}_{i n t}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

AC Frequency

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$

Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) - CAPP
-HAYSTAC

AC Power

-UPLOAD

AXION FIELD

- Use a mode 0 as the background "magnetic field" AC source
-Two modes in one cylindrical cavity
- Upconversion limit $m_{a}=\left|f_{1}-f_{0}\right|+\delta f$

Photon 1: Transverse Magnetic Mode
(Longitudinal Electric)

Photon 0: Transverse
Electric Mode
(Longitudinal Magnetic)
$\mathcal{H}_{i n t}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

AC Frequency

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$

Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) -CAPP
-HAYSTAC

- Use a mode 0 as the background "magnetic field" AC source
-Two modes in one cylindrical cavity
-Upconversion limit $m_{a}=\left|f_{1}-f_{0}\right|+\delta f$

Photon 1: Transverse Magnetic Mode
(Longitudinal Electric)

Photon 0: Transverse
Electric Mode
(Longitudinal Magnetic)
$\mathcal{H}_{i n t}=\epsilon_{0} c g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

AC Frequency

Photon 1: E field of cavity's resonant transverse magnetic mode, $m_{a}=f_{1}+\delta f$

Photon 0, Back ground DC B field of surrounding magnet

eg.

-ADMX
-ORGAN (UWA) - CAPP
-HAYSTAC

AC Power AXION FIELD
-UPLOAD

- Use a mode 0 as the background "magnetic field" AC source
-Two modes in one cylindrical cavity
-Upconversion limit $m_{a}=\left|f_{1}-f_{0}\right|+\delta f$

Photon 1: Transverse Magnetic Mode
(Longitudinal Electric)

Photon 0: Transverse
Electric Mode
(Longitudinal Magnetic)

AC Frequency: Excite two modes: Measure f_{1} Frequency Fluctuation Spectrum AC Power: Excite f_{0} : Measure f_{1} Power Fluctuation Spectrum

UPconversion Low-Noise Oscillator Axion Detection Experiment

- Cavity resonator haloscope
- No externally applied magnetic field
- TM and TE modes (~ 9 GHz modes)
- Height Tunable
- Accessing MHz axions via upconversion

PHYSICAL REVIEW D 107, 112003 (2023)

Searching for low-mass axions using resonant upconversion

Catriona A. Thomson $\odot,{ }^{1,{ }^{*}}$ Maxim Goryachev, ${ }^{1}$ Ben T. McAllister, ${ }^{1,2}$ Eugene N. Ivanov, ${ }^{1}$ Paul Altin, ${ }^{3}$ and Michael E. Tobar $\oplus^{1, t}$
Quantum Technologies and Dark Matter Labs, Department of Physics, University of Western Australia,
35 Stirling Highway, Crawley, Western Australia 6009, Australia
${ }^{2}$ Centre for Astrophysics and Supercomputing, Swinburne University of Technology,
John St, Hawthorn, Victoria 3122, Australia
${ }^{3}$ ARC Centre of Excellence For Engineered Quantum Systems, The Australian National University, Canberra, Australian Capital Territory 2600 Australia

© (Received 17 January 2023; accepted 5 May 2023; published 5 June 2023)

V1: readout via frequency metrology

V2: readout via thermal noise peak (power)

UPLOAD V2: Exclusion limits

PHYSICAL REVIEW D 107, 112003 (2023)

Searching for low-mass axions using resonant upconversion

Catriona A. Thomson®, ${ }^{1, *}$ Maxim Goryachev, ${ }^{1}$ Ben T. McAllister, ${ }^{1,2}$ Eugene N. Ivanov, ${ }^{1}$ Paul Altin, ${ }^{3}$ and Michael E. Tobar® ${ }^{1,}$

FIG. 7. In green, the 95% confidence axion exclusion zone for both $g_{a r y}$ and $g_{a B B}$ for the measured mass range between 1.12 $1.20 \mu \mathrm{~V}$ ($271.7 \mathrm{MHz}-290.3 \mathrm{MHz}$) for a measurement period of 30 days, which is an improvement of 3 orders of magnitude over our previous result [29]. The bright green region represents the uncertainty on excluded $g_{a y y}$, which is detailed in Appendix C. The blue dashed line represents the approximate sensitivity achievable with a niobium resonator of loaded quality factors around 10^{7} and cooled to a temperature of 4 K , measuring for a period of 30 days, and using a cryogenic amplifier of noise temperature 4 K . Construction for this setup is underway.

UPLOAD V3: Cryogenic Niobium

An experiment targeting 350 MHz axions with a dual mode cavity ($\sim 12 \mathrm{GHz}$), height tuning with a piezo actuated lid. Gain
in noise temperature and quality factor.
$290 \mathrm{~K} \rightarrow 4 \mathrm{~K}$
$\langle H\rangle=k_{\mathrm{B}} T$

$Q \sim 13,000 \rightarrow \quad>20,000,000$

Trialing attocube actuator in silver plated cavity
aIXiV > hep-ph > arXiv:2303.10170
High Energy Physics - Phenomenology
ISubmitted on 17 Mar 2023]
Generic axion Maxwell equations: path integral approach

Electromagnetic Couplings of Axions
Anton V. Sokolov, Andreas Ringwald

If Magnetic Charge Exist at High Energy

दIXiV > hep-ph > arXiv:2303.10170
High Energy Physics - Phenomenology
ISubmitted on 17 Mar 2023]
Generic axion Maxwell equations: path integral approach

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

If Magnetic Charge Exist at High Energy
-> Further Modifications to Axion Electrodynamics
aI\{iV>hep-ph > arXiv:2303.10170
High Energy Physics - Phenomenology
[Submitted on 17 Mar 2023]
Generic axion Maxwell equations: path integral approach Anton V. Sokolov, Andreas Ringwald

High Energy Physics - Phenomenology

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

If Magnetic Charge Exist at High Energy
-> Further Modifications to Axion Electrodynamics
-> Can test the existence of Magnetic Charge through Axions

ZI $\mathbf{Z} V>$ hep-ph $>$ arXiv:2303.10170
High Energy Physics - Phenomenology
[Submitted on 17 Mar 2023]
Generic axion Maxwell equations: path integral approach
Anton V. Sokolov, Andreas Ringwald
aI. $\mathbf{i V}>$ hep-ph > arXiv:2205.02605
High Energy Physics - Phenomenology

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

If Magnetic Charge Exist at High Energy
-> Further Modifications to Axion Electrodynamics
-> Can test the existence of Magnetic Charge through Axions

Axion-photon coupling parameter space is expanded from one parameter to three

$$
g_{a \gamma \gamma} \rightarrow\left(g_{a \gamma \gamma}, g_{a E M}, g_{a M M}\right)
$$

aI\{iV>hep-ph > arXiv:2303.10170
High Energy Physics - Phenomenology
[Submitted on 17 Mar 2023]
Generic axion Maxwell equations: path integral approach
Anton V. Sokolov, Andreas Ringwald

ZIViV $>$ hep-ph $>$ arXiv:2205.02605
High Energy Physics - Phenomenology
[Submitted on 5 May 2022]

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

If Magnetic Charge Exist at High Energy
-> Further Modifications to Axion Electrodynamics
-> Can test the existence of Magnetic Charge through Axions

Axion-photon coupling parameter space is expanded from one parameter to three

$$
g_{a \gamma \gamma} \rightarrow\left(g_{a \gamma \gamma}, g_{a E M}, g_{a M M}\right)
$$

aIX iV > hep-ph > arxiv:2303.10170
High Energy Physics - Phenomenology
[Submitted on 17 Mar 2023]
Generic axion Maxwell equations: path integral approach
Anton V. Sokolov, Andreas Ringwald

בI $1 V>$ hep-ph $>$ arXiv:2205.02605
High Energy Physics - Phenomenology
[Submitted on 5 May 2022]

Electromagnetic Couplings of Axions

Anton V. Sokolov, Andreas Ringwald

$$
\vec{\nabla} \cdot \vec{E}_{1}=g_{a \gamma y} c \vec{B}_{0} \cdot \vec{\nabla} a-g_{a E M} \vec{E}_{0} \cdot \vec{\nabla} a+\epsilon_{0}^{-1} \rho_{e 1},
$$

$$
\mu_{0}^{-1} \vec{\nabla} \times \vec{B}_{1}=\epsilon_{0} \partial_{t} \vec{E}_{1}+\vec{J}_{e 1}
$$

$$
+g_{a \gamma \gamma} c \epsilon_{0}\left(-\vec{\nabla} a \times \vec{E}_{0}-\partial_{t} a \vec{B}_{0}\right)
$$

$$
+g_{a E M} \epsilon_{0}\left(-\vec{\nabla} a \times c^{2} \vec{B}_{0}+\partial_{t} a \vec{E}_{0}\right),
$$

$$
\vec{\nabla} \cdot \vec{B}_{1}=-\frac{g_{a M M}}{c} \vec{E}_{0} \cdot \vec{\nabla} a+g_{a E M} \vec{B}_{0} \cdot \vec{\nabla} a
$$

$$
\vec{\nabla} \times \vec{E}_{1}=-\partial_{t} \vec{B}_{1}+\frac{g_{a M M}}{c}\left(c^{2} \nabla a \times \vec{B}_{0}-\partial_{t} a \vec{E}_{0}\right)
$$

$$
+g_{a E M}\left(\nabla a \times \vec{E}_{0}+\partial_{t} a \vec{B}_{0}\right)
$$

Calculate Form Factors for Resonant Experiment with Static and Time varying Background Electric and Magnetic Fields -> Poynting Theorem

Calculate Form Factors for Resonant Experiment with Static and Time varying Background Electric and Magnetic Fields -> Poynting Theorem

Wiley Online Library

운
 mamemphysik

Research Article 靣 Open Access (c) (i)
Sensitivity of Resonant Axion Haloscopes to Quantum
Electromagnetodynamics
Michael E. Tobar M, Catriona A. Thomson, Benjamin T. McAllister, Maxim Goryachev, Anton V. Sokolov, Andreas Ringwald

First published: 22 April 2023 | https://doi.org/10.1002/andp. 202200594

Calculate Form Factors for Resonant Experiment with Static and Time varying Background Electric and Magnetic Fields -> Poynting Theorem

Wiley Online Library

Research Article 自 Open Access (c) (i)
Sensitivity of Resonant Axion Haloscopes to Quantum Electromagnetodynamics

Michael E. Tobar Catriona A. Thomson, Benjamin T. McAllister, Maxim Goryachev, Anton V. Sokolov, Andreas Ringwald

Annalen der Physik / Early View / 2200622
Research Article ©Open Access (c) (i)
Limits on Dark Photons, Scalars, and Axion-Electromagnetodynamics with the ORGAN Experiment

Ben T. McAllister Aaron Quiskamp, Ciaran A. J. O'Hare, Paul Altin, Eugene N. Ivanov, Maxim Goryachev Michael E. Tobar
First published: 06 June 2023
https://doi.org/10.1002/andp. 202200622

Calculate Form Factors for Resonant Experiment with Static and Time varying Background Electric and Magnetic Fields -> Poynting Theorem

Wiley Online Library

Research Article © Open Access (c) (i)
Sensitivity of Resonant Axion Haloscopes to Quantum Electromagnetodynamics

Michael E. Tobar, Catriona A. Thomson, Benjamin T. McAllister, Maxim Goryachev, Anton V. Sokolov, Andreas Ringwald

Annalen der Physik / Early View / 2200622
Research Article ©Open Access (c) (i)
Limits on Dark Photons, Scalars, and Axion-Electromagnetodynamics with the ORGAN Experiment

Ben T. McAllister \【, Aaron Quiskamp, Ciaran A. J. O'Hare, Paul Altin, Eugene N. Ivanov, Maxim Goryachev, Michael E. Tobar
First published: 06 June 2023
https://doi.org/10.1002/andp. 202200622

First published: 22 April 2023 | https://doi.org/10.1002/andp. 202200594

Calculate Form Factors for Resonant Experiment with Static and Time varying Background Electric and Magnetic Fields -> Poynting Theorem

Wiley Online Library

Annalen der Physik / Early View / 2200622
Research Article 〇Open Access (c) (i)
Limits on Dark Photons, Scalars, and Axion-Electromagnetodynamics with the ORGAN Experiment

Ben T. McAllister Aaron Quiskamp, Ciaran A. J. O'Hare, Paul Altin, Eugene N. Ivanov, Maxim Goryachev Michael E. Tobar

First published: 06 June 2023
https://doi.org/10.1002/andp. 202200622

Reactive Experiment with Static Background Electric and Magnetic Field -> Imaginary Poynting Theorem

(a) (Received 20 June 2023; accepted 2 August 2023; published 17 August 2023)

SENSITIVITY OF AXION RESONANT HALOSCOPES UNDER DC MAGNETIC FIELDS

$$
\begin{gathered}
P_{s 1}=P_{d}=\frac{\omega_{1} U_{1}}{Q_{1}}=g_{a r r} \frac{\omega_{a} \epsilon_{0}\left\langle a_{0}\right\rangle}{\sqrt{2} Q_{1}} \int \vec{B}_{0} \cdot \operatorname{Re}\left(\mathbf{E}_{1}\right) d V+g_{a E M} \frac{\omega_{a} \epsilon_{0}\left\langle a_{0}\right\rangle c}{\sqrt{2} Q_{1}} \int \vec{B}_{0} \cdot \operatorname{Re}\left(\mathbf{B}_{1}\right) d V \\
\sqrt{P_{1}}=\sqrt{\omega_{a} Q_{1} U_{1}}=\left(g_{a r r} \sqrt{C_{1 a r y}}+g_{a E M} \sqrt{C_{1 a E M}}\right)\left\langle a_{0}\right\rangle c B_{0} \sqrt{\omega_{a} Q_{1} \epsilon_{0} V_{1}}=\left(g_{a r r} \sqrt{C_{\text {lary }}}+g_{a E M} \sqrt{C_{1 a E M}}\right) B_{0} \sqrt{\frac{\rho_{a} Q_{1} \epsilon_{0} c^{5} V_{1}}{\omega_{a}}}
\end{gathered}
$$

Form Factors

$$
C_{1 a r y}=\frac{\left(\int \vec{B}_{0} \cdot \operatorname{Re}\left(\mathbf{E}_{1}\right) d V\right)^{2}}{B_{0}^{2} V_{1} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d V} \quad C_{1 E M}=\frac{\left(\int \vec{B}_{0} \cdot \operatorname{Re}\left(\mathbf{B}_{1}\right) d V\right)^{2}}{B_{0}^{2} V_{1} \int \mathbf{B}_{1} \cdot \mathbf{B}_{1}^{*} d V}
$$

SENSITIVITY OF AXION RESONANT HALOSCOPES UNDER DC ELECTRIC FIELDS

$$
\sqrt{P_{1}}=\sqrt{\omega_{a} Q_{1} U_{1}}=\left(g_{a M M} \sqrt{C_{1 a M M}}+g_{a E M} \sqrt{C_{1 a E M m}}\right)\left\langle a_{0}\right\rangle E_{0} \sqrt{\omega_{a} Q_{1} \epsilon_{0} V_{1}}=\left(g_{a M M} \sqrt{C_{1 a M M}}+g_{a E M} \sqrt{C_{1 a E M m}}\right) E_{0} \sqrt{\frac{\rho_{a} Q_{1} \epsilon_{0} c^{3} V_{1}}{\omega_{a}}}
$$

Form Factors

$$
C_{1 a E M m}=\frac{\left(\int \vec{E}_{0} \cdot \operatorname{Re}\left(\mathbf{E}_{1}\right) d V\right)^{2}}{E_{0}^{2} V_{1} \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d V} \quad C_{1 a M M}=\frac{\left(\int \vec{E}_{0} \cdot \operatorname{Re}\left(\mathbf{B}_{1}\right) d V\right)^{2}}{E_{0}^{2} V_{1} \int \mathbf{B}_{1} \cdot \mathbf{B}_{1}^{*} d V}
$$

Searching for GUT-scale QCD axions and monopoles with a high-voltage capacitor

Michael E. Tobar© ${ }^{1, *}$ Anton V. Sokolov© ${ }^{2}{ }^{2}$ Andreas Ringwald© ${ }^{3}{ }^{3}$ and Maxim Goryachev ${ }^{1}$
${ }^{1}$ Quantum Technologies and Dark Matter Labs, Department of Physics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
${ }^{2}$ Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, United Kingdom
${ }^{3}$ Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany

(0) (Received 20 June 2023; accepted 2 August 2023; published 17 August 2023)

The QCD axion has been postulated to exist because it solves the strong- $C P$ problem. Furthermore, if it exists axions should be created in the early Universe and could account for all the observed dark matter. In particular, axion masses of order $10^{-10} \mathrm{eV}$ to $10^{-7} \mathrm{eV}$ correspond to axions in the vicinity of the grand unified theory scale (GUT-scale). In this mass range many experiments have been proposed to search for the axion through the standard QED coupling parameter $g_{a y \gamma}$. Recently axion electrodynamics has been expanded to include two more coupling parameters, $g_{a E M}$ and $g_{a M M}$, which could arise if heavy magnetic monopoles exist. In this work we show that both $g_{a M M}$ and $g_{a E M}$ may be searched for using a high-voltage capacitor. Since the experiment is not sensitive to $g_{a y \gamma}$, it gives a new way to search for effects of heavy monopoles if the GUT-scale axion is shown to exist, or to simultaneously search for both the axion and the monopole at the same time.

DOI: 10.1103/PhysRevD.108.035024

AC Capacitor: Apply Poynting Theorem: Sensitive to $g_{a E M}$

Vector Phasor Amplitudes
$\left.\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s=\omega_{a} \int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0}}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$.

AC Capacitor: Apply Poynting Theorem: Sensitive to $g_{a E M}$

Vector Phasor Amplitudes
$\left.\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s=\omega_{a} \int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0}}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$.
$U_{1}=\frac{\epsilon_{0} a_{0}^{2}\left(\int\left(g_{a E M}\left(\mathbf{E}_{1}^{*}+\mathbf{E}_{1}\right)-g_{a M M} c\left(\mathbf{B}_{1}^{*}+\mathbf{B}_{1}\right)\right) \cdot \vec{E}_{0} d v\right)^{2}}{8 \int\left(\left(c^{2} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)\right) d v}$

AC Capacitor: Apply Poynting Theorem: Sensitive to $g_{a E M}$

Vector Phasor Amplitudes
$\left.\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s=\omega_{a} \int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0}}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$.
$U_{1}=\frac{\varepsilon_{0} a_{0}^{2}\left(\int\left(g_{a E M}\left(\mathbf{E}_{1}^{*}+\mathbf{E}_{1}\right)-g_{a M M c}\left(\mathbf{B}_{1}^{*}+\mathbf{B}_{1}\right)\right) \cdot \vec{E}_{0} d v\right)^{2}}{8 \int\left(\left(c^{2} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)\right) d v} \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 0 \quad \mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 2 \mathbf{E}_{1}$

AC Capacitor: Apply Poynting Theorem: Sensitive to $g_{a E M}$

Vector Phasor Amplitudes
$\left.\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s=\omega_{a} \int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0}}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$.
$U_{1}=\frac{\epsilon_{0} a_{0}^{2}\left(\int\left(g_{a E M}\left(\mathbf{E}_{\tilde{i}}^{*}+\mathbf{E}_{1}\right)-g_{a M M c}\left(\mathbf{B}_{\tilde{i}}^{*}+\mathbf{B}_{1}\right)\right) \cdot \vec{E}_{0} d v\right)^{2}}{8 \int\left(\left(c^{2} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\mathbf{E}_{1} \cdot \mathbf{E}_{\tilde{i}}^{*}\right)\right) d v} \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 0 \quad \mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 2 \mathbf{E}_{1} \quad U_{1} \approx \frac{g_{a E M}^{2} a_{0}^{2} \epsilon_{0}\left(\int \mathbf{E}_{1} \cdot \vec{E}_{0} d v\right)^{2}}{2 \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d v}$

AC Capacitor: Apply Poynting Theorem: Sensitive to $g_{a E M}$

Vector Phasor Amplitudes

$$
\begin{aligned}
& \left.\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s=\omega_{a} \int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0}}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V . \\
& U_{1}=\frac{\epsilon_{0} a_{0}^{2}\left(\int\left(g_{a E M}\left(\mathbf{E}_{1}^{*}+\mathbf{E}_{1}\right)-g_{a M M}\left(\mathbf{B}_{1}^{*}+\mathbf{B}_{1}\right)\right) \cdot \vec{E}_{0} d v\right)^{2}}{8 \int\left(\left(c^{2} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)\right) d v} \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 0 \quad \mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 2 \mathbf{E}_{1} \quad U_{1} \approx-\frac{g_{a E M}^{2} a_{0}^{2} \epsilon_{0}\left(\int \mathbf{E}_{1} \cdot \overrightarrow{E_{0}} d v\right)^{2}}{2 \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d v}
\end{aligned}
$$

Axion generated Electric Field

AC Capacitor: Apply Poynting Theorem: Sensitive to $g_{a E M}$

Vector Phasor Amplitudes

$$
\begin{aligned}
& \left.\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s=\omega_{a} \int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0}}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V . \\
& U_{1}=\frac{\epsilon_{0} a_{0}^{2}\left(\int\left(g_{a E M}\left(\mathbf{E}_{1}^{*}+\mathbf{E}_{1}\right)-g_{a M M^{c}}\left(\mathbf{B}_{1}^{*}+\mathbf{B}_{1}\right)\right) \cdot \vec{E}_{0} d v\right)^{2}}{8 \int\left(\left(c^{2} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)\right) d v} \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 0 \quad \mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 2 \mathbf{E}_{1} \quad U_{1} \approx-\frac{g_{a E M}^{2} a_{0}^{2} \epsilon_{0}\left(\int \mathbf{E}_{1} \cdot \vec{E}_{0} d v\right)^{2}}{2 \int \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*} d v}
\end{aligned}
$$

Axion generated Electric Field

Cylindrical // Plate Capacitor

$$
\begin{gathered}
\tilde{\mathbf{E}}_{1}=\tilde{E}_{01} J_{0}\left(\frac{\omega_{1}}{c} r\right) e^{-j \omega_{1} t} \hat{z} \\
\tilde{\mathbf{B}}_{1}=-j \frac{\tilde{E}_{01}}{c} J_{1}\left(\frac{\omega_{1}}{c} r\right) e^{-j \omega_{1} t} \hat{\varphi} \quad \tilde{E}_{01}=\frac{\tilde{q}_{1}}{\pi R_{c}^{2} \epsilon_{0}}
\end{gathered}
$$

Axion Generated Magnetic Field-> Magnetic Circuit Readout Sensitive to $g_{a M M}$

$\left.\frac{\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s}{\omega_{a}}=\int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0} c}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$
$\mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 0 \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 2 \mathbf{B}_{1}$

Axion Generated Magnetic Field-> Magnetic Circuit Readout Sensitive to $g_{a M M}$

$\left.\frac{\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s}{\omega_{a}}=\int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0} c}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$
$\mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 0 \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 2 \mathbf{B}_{1}$

$$
U_{1}=\frac{\left(\frac{g_{a M M} a_{0} \epsilon_{0} c}{2} \int \mathbf{B}_{1} \cdot \vec{E}_{0} d V\right)^{2}}{\int\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right) d V}
$$

Axion Generated Magnetic Field-> Magnetic Circuit Readout Sensitive to $g_{a M M}$

$\left.\frac{\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s}{\omega_{a}}=\int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0} c}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$
$\mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 0 \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 2 \mathbf{B}_{1}$

$$
U_{1}=\frac{\left(\frac{g_{a M M} a_{0} \epsilon_{0} c}{2} \int \mathbf{B}_{1} \cdot \vec{E}_{0} d V\right)^{2}}{\int\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\varepsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right) d V} \quad U_{1} \approx \frac{g_{a M M}^{2} a_{0}^{2} \epsilon_{0}}{2} \frac{\left(\int \mathbf{B}_{1} \cdot \vec{E}_{0} d V\right)^{2}}{\int \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1} d V}
$$

Axion Generated Magnetic Field-> Magnetic Circuit Readout Sensitive to $g_{a M M}$

$\left.\frac{\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s}{\omega_{a}}=\int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0} c}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$

$$
\mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 0 \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 2 \mathbf{B}_{1}
$$

$$
U_{1}=\frac{\left(\frac{g_{a M M} a_{0} \epsilon_{0} c}{2} \int \mathbf{B}_{1} \cdot \vec{E}_{0} d V\right)^{2}}{\int\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right) d V} \quad U_{1} \approx \frac{g_{a M M}^{2} a_{0}^{2} \epsilon_{0}}{2} \frac{\left(\int \mathbf{B}_{1} \cdot \vec{E}_{0} d V\right)^{2}}{\int \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1} d V}
$$

Axion Generated Magnetic Field-> Magnetic Circuit Readout Sensitive to $g_{a M M}$

$\left.\frac{\oint \operatorname{Im}\left(\mathbf{S}_{1}\right) \cdot \hat{n} d s}{\omega_{a}}=\int\left(\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right)-\frac{g_{a E M} a_{0} \epsilon_{0}}{4}\left(\mathbf{E}_{1}+\mathbf{E}_{1}^{*}\right) \cdot \vec{E}_{0}+\frac{g_{a M M} a_{0} \epsilon_{0} c}{4}\left(\mathbf{B}_{1}+\mathbf{B}_{1}^{*}\right) \cdot \vec{E}_{0}\right)\right) d V$
$\mathbf{E}_{1}+\mathbf{E}_{1}^{*} \sim 0 \quad \mathbf{B}_{1}+\mathbf{B}_{1}^{*} \sim 2 \mathbf{B}_{1}$
$U_{1}=\frac{\left(\frac{g_{a M M} a_{0} \epsilon_{0} c}{2} \int \mathbf{B}_{1} \cdot \vec{E}_{0} d V\right)^{2}}{\int\left(\frac{1}{2 \mu_{0}} \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1}-\frac{\epsilon_{0}}{2} \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right) d V} \quad U_{1} \approx \frac{g_{a M M}^{2} a_{0}^{2} \epsilon_{0}}{2} \frac{\left(\int \mathbf{B}_{1} \cdot \vec{E}_{0} d V\right)^{2}}{\int \mathbf{B}_{1}^{*} \cdot \mathbf{B}_{1} d V}$

Low-Mass Sensitivity to the QCD Axion

18 days of continuous data taking

SCALAR DARK MATTER: ELECTROMAGNETIC TECHNIQUES

Searching for scalar field dark matter using cavity resonators and capacitors

V. V. Flambaum®, ${ }^{1,{ }^{*}}$ B. T. McAllister, ${ }^{2,3, \dagger}$ I. B. Samsonov® ${ }^{1,{ }^{1,}}$ and M. E. Tobar® ${ }^{2,8}$
${ }^{1}$ School of Physics, University of New South Wales, Sydney 2052, Australia
${ }^{2}$ ARC Centre of Excellence For Engineered Quantum Systems and ARC Centre of Excellence For Dark
Matter Particle Physics, QDM Laboratory, Department of Physics, University of Western Australia,
35 Stirling Highway, Crawley WA 6009, Australia
${ }^{3}$ ARC Centre of Excellence for Dark Matter Particle Physics, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, John St, Hawthorn VIC 3122, Australia

$g_{a E M} \equiv g_{\phi \gamma \gamma}$

