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= Re (ãe−jωat)

Axion Equation of Motion: 

Klein–Gordon equation 
for massive spin 0 

particle 

Photon Haloscopes

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0 ⃗Je − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )
∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion Electrodynamics 

(Represents two photons)



a(t) =
1
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= Re (ãe−jωat)

Axion Equation of Motion: 

Klein–Gordon equation 
for massive spin 0 

particle 

Photon Haloscopes

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0 ⃗Je − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )
∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion Electrodynamics 

(Represents two photons)



a(t) =
1
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= Re (ãe−jωat)

Axion Equation of Motion: 

Klein–Gordon equation 
for massive spin 0 

particle 

Photon Haloscopes
• Axions convert into photons in presence of a background field

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0 ⃗Je − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )
∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion Electrodynamics 

(Represents two photons)



a(t) =
1
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= Re (ãe−jωat)

Axion Equation of Motion: 

Klein–Gordon equation 
for massive spin 0 

particle 

Photon Haloscopes
• Axions convert into photons in presence of a background field

• Effectively an Axion -> Photon Transducer 

• Similar to Modifications of Electrodynamics for Electricity Generation

• Difference: adds non-zero electromagnetic chirality to Eqns. of Motion

• Zilch (electromagnetism)

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0 ⃗Je − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )
∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion Electrodynamics 

(Represents two photons)

ϵ0∇ ⋅ ⃗E 1 = ρe1 + ρab

1
μ0

∇ × ⃗B 1 − ϵ0∂t
⃗E 1 = ⃗Je1 + ⃗Jab + ⃗Jae



a(t) =
1
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2 (ãe−jωat + ã*ejωat)
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= Re (ãe−jωat)

Axion Equation of Motion: 

Klein–Gordon equation 
for massive spin 0 

particle 

Photon Haloscopes
• Axions convert into photons in presence of a background field

• Effectively an Axion -> Photon Transducer 

• Similar to Modifications of Electrodynamics for Electricity Generation

• Difference: adds non-zero electromagnetic chirality to Eqns. of Motion

• Zilch (electromagnetism)

∇ ⋅ ⃗E =
ρe

ε0
+ cgaγγ

⃗B . ∇a

∇ × ⃗B −
1
c2

∂t
⃗E =

μ0 ⃗Je − gaγγϵ0c ( ⃗B ∂ta + ∇a × ⃗E )
∇ ⋅ ⃗B = 0
∇ × ⃗E + ∂t

⃗B = 0

Modified Axion Electrodynamics 

(Represents two photons)

ϵ0∇ ⋅ ⃗E 1 = ρe1 + ρab

1
μ0

∇ × ⃗B 1 − ϵ0∂t
⃗E 1 = ⃗Je1 + ⃗Jab + ⃗Jae

ρab = gaγγϵ0c∇ ⋅ (a(t) ⃗B 0( ⃗r, t))
⃗Jab = − gaγγϵ0c∂t (a(t) ⃗B 0( ⃗r, t))
⃗Jae = − gaγγϵ0c∇ × (a(t) ⃗E 0( ⃗r, t))

∇ ⋅ ⃗Jab = − ∂tρab

Source Terms Generate Photons->  
From Background Fields Mixing with Axion

1) Background field 
(subscript zero) 

2) Created Photon Field 
(subscript 1)



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon

Photonic Haloscope Equations in terms of Auxiliary Fields



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

Photonic Haloscope Equations in terms of Auxiliary Fields



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields

⃗Ma1 = − gaγγa(t)cϵ0
⃗E 0( ⃗r, t)

1
ϵ0

⃗P a1 = − gaγγa(t)c ⃗B 0( ⃗r, t)



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields

⃗Ma1 = − gaγγa(t)cϵ0
⃗E 0( ⃗r, t)

1
ϵ0

⃗P a1 = − gaγγa(t)c ⃗B 0( ⃗r, t)

∇ × ⃗D1( ⃗r, t) = − ∂t
⃗B 1( ⃗r, t) + ∇ × ( ⃗P 1 + ⃗P a1)



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields

⃗Ma1 = − gaγγa(t)cϵ0
⃗E 0( ⃗r, t)

1
ϵ0

⃗P a1 = − gaγγa(t)c ⃗B 0( ⃗r, t)

∇ × ⃗D1( ⃗r, t) = − ∂t
⃗B 1( ⃗r, t) + ∇ × ( ⃗P 1 + ⃗P a1)

∇ × ⃗P a1 ≠ 0 = − gaγγa(t)c∇ × ⃗B 0( ⃗r, t) (∇a = 0)



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields

⃗Ma1 = − gaγγa(t)cϵ0
⃗E 0( ⃗r, t)

1
ϵ0

⃗P a1 = − gaγγa(t)c ⃗B 0( ⃗r, t)

∇ × ⃗D1( ⃗r, t) = − ∂t
⃗B 1( ⃗r, t) + ∇ × ( ⃗P 1 + ⃗P a1)

∇ × ⃗P a1 ≠ 0 = − gaγγa(t)c∇ × ⃗B 0( ⃗r, t) (∇a = 0)



∇ × ⃗B 0 = μ0ϵ0∂t
⃗E 0 + μ0 ⃗Je0

∇ × ⃗E 0 = − ∂t
⃗B 0

∇ ⋅ ⃗B 0 = 0

∇ ⋅ ⃗E 0 = ϵ−1
0 ρe0

Applied Background Field

∇ ⋅ ( ⃗E 1( ⃗r, t) − gaγγa(t)c ⃗B 0( ⃗r, t)) =
ρe1

ϵ0

∇ × ( ⃗B 1( ⃗r, t) +
gaγγa(t)

c
⃗E 0( ⃗r, t))

−
1
c2

∂t ( ⃗E 1( ⃗r, t) − gaγγa( ⃗r, t)c ⃗B 0( ⃗r, t)) = μ0 ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0.

Measure Created Photon
∇ ⋅ ⃗D1 = ρe1

∇ × ⃗H1 − ∂t
⃗D1 = ⃗Je1

∇ ⋅ ⃗B 1( ⃗r, t) = 0

∇ × ⃗E 1( ⃗r, t) + ∂t
⃗B 1( ⃗r, t) = 0,

⃗H1( ⃗r, t) =
⃗B 1

μ0
− ⃗M1 − ⃗Ma1;

⃗D1( ⃗r, t) = ϵ0
⃗E 1 + ⃗P 1 + ⃗P a1

Constitutive Relations(Include Matter) 
Effective Magnetisation and Polarisation 

Photonic Haloscope Equations in terms of Auxiliary Fields

⃗Ma1 = − gaγγa(t)cϵ0
⃗E 0( ⃗r, t)

1
ϵ0

⃗P a1 = − gaγγa(t)c ⃗B 0( ⃗r, t)

∇ × ⃗D1( ⃗r, t) = − ∂t
⃗B 1( ⃗r, t) + ∇ × ( ⃗P 1 + ⃗P a1)

∇ × ⃗P a1 ≠ 0 = − gaγγa(t)c∇ × ⃗B 0( ⃗r, t) (∇a = 0)

⃗Jab( ⃗r, t) =
∂ ⃗P a1( ⃗r, t)

∂t

+

-
+

-
+- +

-
+

-

t

+-

t = 0

⃗P 1a( ⃗r, t) =
−gaγγa(t)ϵ0c ⃗B 0( ⃗r )

⃗Jm1a

xa(ma)

⃗B 0( ⃗r )

⃗Je0

−gaγγ

γ0 γ1



The emergent electric field (EEF) is a fictitious electric field acting on conduction electrons through the Berry phase mechanism.
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• The corresponding phasor form of the Poynting vector
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Reac%ve power does not propagate or dissipate out of the volume of the detector (ie. no loss): Oscillates in and out of volume

Does not need to be the order of the Compton wavelength in size (sub wavelength phenomena) 
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UPconversion Low-Noise Oscillator 
Axion Detection Experiment

•  Cavity resonator haloscope
•  No externally applied magnetic field 
•  TM and TE modes ( ~ 9 GHz modes) 
•  Height Tunable 
•  Accessing MHz axions via upconversion



V2: readout via thermal noise peak 
(power)V1: readout via frequency metrology



UPLOAD V2: Exclusion limits



UPLOAD V3: Cryogenic Niobium

290 K  4 K

Q ~ 13,000  > 20,000,000

An experiment targeting 350 
MHz axions with a dual mode 
cavity (~12 GHz), height tuning 
with a piezo actuated lid. Gain 
in noise temperature and 
quality factor.

Trialing attocube actuator in silver 
plated cavity
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⃗∇ ⋅ ⃗E 1 = gaγγc ⃗B 0 ⋅ ⃗∇ a − gaEM
⃗E 0 ⋅ ⃗∇ a + ϵ−1

0 ρe1,

μ−1
0

⃗∇ × ⃗B 1 = ϵ0∂t
⃗E 1 + ⃗Je1

+gaγγcϵ0 (− ⃗∇ a × ⃗E 0 − ∂ta ⃗B 0)
+gaEMϵ0 (− ⃗∇ a × c2 ⃗B 0 + ∂ta ⃗E 0),

⃗∇ ⋅ ⃗B 1 = −
gaMM

c
⃗E 0 ⋅ ⃗∇ a + gaEM

⃗B 0 ⋅ ⃗∇ a,

⃗∇ × ⃗E 1 = − ∂t
⃗B 1 +

gaMM

c (c2 ∇a × ⃗B 0 − ∂ta ⃗E 0)
+gaEM (∇a × ⃗E 0 + ∂ta ⃗B 0) .

gaγγ → (gaγγ, gaEM, gaMM)

 Axion-photon coupling parameter space 
is expanded from one parameter to three 

If Magnetic Charge Exist at High Energy
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SENSITIVITY OF AXION RESONANT HALOSCOPES UNDER DC MAGNETIC FIELDS 

Ps1 = Pd =
ω1U1

Q1
= gaγγ

ωaϵ0⟨a0⟩

2Q1
∫ ⃗B 0 ⋅ Re(E1) dV + gaEM

ωaϵ0⟨a0⟩c

2Q1
∫ ⃗B 0 ⋅ Re(B1) dV

P1 = ωaQ1U1 = (gaγγ C1aγγ + gaEM C1aEM)⟨a0⟩cB0 ωaQ1ϵ0V1 = (gaγγ C1aγγ + gaEM C1aEM)B0
ρaQ1ϵ0c5V1

ωa

Form Factors

C1aγγ =
( ∫ ⃗B 0 ⋅ Re(E1)dV)2

B2
0V1 ∫ E1 ⋅ E*1 dV

C1EM =
( ∫ ⃗B 0 ⋅ Re(B1)dV)2

B2
0V1 ∫ B1 ⋅ B*1 dV



SENSITIVITY OF AXION RESONANT HALOSCOPES UNDER DC ELECTRIC FIELDS 

P1 = ωaQ1U1 = (gaMM C1aMM + gaEM C1aEMm)⟨a0⟩E0 ωaQ1ϵ0V1 = (gaMM C1aMM + gaEM C1aEMm)E0
ρaQ1ϵ0c3V1

ωa
,

Form Factors

C1aEMm =
( ∫ ⃗E 0 ⋅ Re(E1)dV)2

E2
0V1 ∫ E1 ⋅ E*1 dV

C1aMM =
( ∫ ⃗E 0 ⋅ Re(B1)dV)2

E2
0V1 ∫ B1 ⋅ B*1 dV

,
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gaEMãE0 ̂z
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σ̃1 = gaEMãϵ0E0
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18 days of continuous data taking 
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Low-Mass Sensitivity to the QCD Axion



gaEM ≡ gϕγγ

SCALAR DARK MATTER: ELECTROMAGNETIC TECHNIQUES
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