

SABRE South: not just a modulation hunter

Francesco Nuti

The University of Melbourne CDM Annual Workshop 2022, Geelong 24/11/2022

SABRE South

- SABRE South has been designed with the intent of testing DAMA/LIBRA longstanding annual modulation
- It uses 50 kg of the lowest background NaI(TI) crystals
- Can exclude (observe the DAMA/LIBRA modulation at 3σ (5 σ) in about two years

Detailed detector features in backup

positioned in

Hemisphere

What else can SABRE measure?

Francesco Nuti

What else can SABRE measure?

- We created experimental+theory working groups to explore a variety of research topics
- More info at: https://darkmatteraustrali a.atlassian.net/wiki/space s/CDMPublic/pages/12546 53955/SABRE+White+Pap er

Topics	Coordinators
<u>Dark Matter Halo</u>	Ciaran O'Hare (Theo) Madeleine Zurowski (SABRE)
Low velocity Dark Matter <u>Single Interaction</u> <u>Multiply-interacting</u>	Dipan Sengupta (Theo) Matthew Dolan (Theo) Irene Bolognino (SABRE) Lindsey Bignell (SABRE)
Boosted Dark Matter	Jayden Newstead (Theo) Matthew Gerathy (SABRE)
<u>Quantum Mechanics</u>	Raymond Volkas (Theo) Francesco Nuti (SABRE)
<u>Supernova neutrinos</u>	Ciaran O'Hare (Theo) Madeleine Zurowski (SABRE)

Low-energy single-interaction signals

- SABRE South is pound-forpound the best NaI(Tl) detector
- Should DAMA/LIBRA signal be ruled out, SABRE South can still test DM hypotheses more strongly than other Nal(Tl) experiments given enough time
- Plenty of models test but other target experiments expected to have generally higher sensitivity

solar axion induced signals

Solar Axion arXiv:1904.06860

Nal favorable models?

- Looking for inputs from theory for models which favor Nal targets so that SABRE can set strong limits:
- Inelastic DM relaxes low mass constraints (F, Ne)
- Proto-philic DM relaxes neutron heavy targets (Xe, Ge)
- Spin dependent DM relaxes spin-less targets (Ar)

Target	Α	Spin nucleon
F	19	р
Ne	20	-
Na	23	р
Ar	40	-
Ge	73	n
I	127	р
Xe	131	n

Nal favorable models?

- Looking for inputs from theory for models which favor Nal targets so that SABRE can set strong limits:
- Inelastic DM relaxes low mass constraints (F, Ne)
- Proto-philic DM relaxes neutron heavy targets (Xe, Ge)
- Spin dependent DM relaxes spin-less targets (Ar)

Target	Α	Spin nucleon
F	19	Ð
Ne	20	-
Na	23	р
Ar	40	-
Ge	73	h
I	127	р
Xe	131	n

Comprehensive sensitivity calculation tool

Tool to calculate rates and consistently test DM theories considering:

- DM velocity distributions
- Form factors
- Experimental factors: efficiency, resolution, quenching factors
- Looking for contributors:
- improve sensitivity calculations (add time-dependent background)
- expand applicability

git@bitbucket.org:darkmatteraustralia/sensitivity_studies.git

M. Zurowski

files for each distribution

detector.h

Testing local DM distribution

- Modulation searches typically assume Standard Halo Model (SHM) → isotropic Gaussian velocity distribution
- Local substructures such as Sequoia, Helmi streams and the Shards have been observed
- These are expected to have associated underlying DM halo substructures which change overall velocity and density distributions
- More rapid modulation amplitude and peak position changes with v_{min}, i.e. type of target

 experiments can observe significantly different modulations

Sequoia arXiv:1904.03185 Helmi arXiv:1611.00222 Shards arXiv:1909.04684]

Francesco Nuti

Multiply-interacting dark matter

- Plank scale mass DM candidates expected to produce multiple keV energy interactions in liquid scintillator in the span of μ s
- Requires dedicated trigger
- Background from PMT dark rate → determine minimum number of coincidences → E threshold
- Sensitive to cross-sections down to $5x10^{-24}$ (E_th/500keV) cm² and 10^{-28} (E_th/500keV) cm² and masses up to m χ < 10^{19} GeV after 3 years
- To improve estimate:
 - Model of incident direction, scattering energy distribution (theo)
 - Dark rate characterisation (exp)
 - Assess other background sources (exp)

P. cox

Multiply-interacting dark matter

- Plank scale mass DM candidates expected to produce multiple keV energy interactions in liquid scintillator in the span of μs
- Requires dedicated trigger
- Background from PMT dark rate \rightarrow determine minimum number of coincidences \rightarrow E threshold
- Sensitive to cross-sections down to $5x10^{-24}$ (E_th/500keV) cm² and 10^{-28} (E_th/500keV) cm² and masses up to m χ < 10^{19} GeV after 3 years
- To improve estimate:
 - Model of incident direction, scattering energy distribution (theo)
 - Dark rate characterisation (exp)
 - Assess other background sources (exp)

Boosted Dark Matter

- M. Gerathy I. Newstead Cosmic-ray upscattered DM (arXiv:2108.00583) b χ_1 Inelastic Boosted DM (arXiv:1811.09344)
- To assess SABRE sensitivity:

Multiple MeV scale interactions

- Model of incident direction, scattering energy distribution (theo)
- Study how attenuation through Earth and detector position affect signal detection (theo)
- Cosmogenic muon background characterisation (exp)
- Study resolution on spatial and time reconstruction of individual interactions (exp)

Rare events detection

- SABRE could also observe supernova neutrinos via coherent elastic neutrinonucleus scattering
- Handful of events in a 10 second yearst
 Max distance ~2 kpc with 1
- Max distance ~2 kpc with 1 keVee threshold and 50 kg detector
- Can this contribute to supernova characterisation?
 - Time accuracy requirements
 - Is position of detector in Southern Hemisphere advantageous?

C. O'Hare

Quantum Mechanic tests

- Quantum mechanics extensions have been hypothesized to address fundamental questions (wave function collapse as result of measurement and transition to non-QM macroscopic systems) or introduce quantum gravity
- QM extension can allow new radiation producing processes that can be measured by low background detector
- 1. Atomic and Nuclear transitions in Pauli Exclusion Principle (PeP) violating processes
 - SABRE sensitivity to be investigated
 - Nuclear transitions could potentially be measured without shielding
- 2. Spontaneous radiation emission from charged particles *R. Volkas*

F. Nuti

Francesco Nuti

The CSL models

• The Continuous Spontaneous Localization (CSL) models address the measurement problem with the introduction of a stochastic non-linear noise field in the Schrödinger Equation Mass density operator Noise field

$$i\hbar \frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = \hat{H}|\psi(t)
angle \longrightarrow i\hbar \frac{\mathrm{d}|\psi_t
angle}{\mathrm{d}t} = \left[\hat{H} - \frac{\hbar\sqrt{\lambda}}{m_0}\int \mathrm{d}\mathbf{x}\,\hat{M}(\mathbf{x})w_t(\mathbf{x})\right]|\psi_t
angle$$

- Fundamental parameters of the theory: the collapse rate $\lambda,$ the correlation length of the noise $r_{\rm C}$
- Origin of noise field can be bounded to gravitational models
- Lead to spontaneous radiation emission rate from nuclei and electrons with $10 < E < 10^5 \text{ keV}$

$$\frac{d\Gamma}{dE} = N_{atoms} \times \left(N_A^2 + N_A\right) \times \frac{\lambda \hbar e^2}{4\pi^2 \varepsilon_0 m_0^2 r_C^2 c^3 E}$$

Spontaneous radiation limits

- Assessed sensitivity of SABRE to spontaneous radiation
- Background from SABRE simulation model with 10% uncertainty on overall rate (0.72 dru)
- Target mass 50 kg of target
- Expected to reach $\lambda/r_{\rm C}$ < 0.1 in about 2 years

Spontaneous radiation limits

- Assessed sensitivity of SABRE to spontaneous radiation
- Background from SABRE simulation model with 10% uncertainty on overall rate (0.72 dru)
- Target mass 50 kg of target
- Expected to reach $\lambda/r_{\rm C} < 0.1$ in about 2 years

Spontaneous radiation limits

- Assessed sensitivity of SABRE to spontaneous radiation
- Background from SABRE simulation model with 10% uncertainty on overall rate (0.72 dru)
- Target mass 50 kg of target
- Expected to reach $\lambda/r_{\rm C} < 0.1$ in about 2 years

Conclusion

- SABRE South is a very complex and powerful particle detector
- There is potential to test physics beyond the DAMA/LIBRA modulation
- We have investigated single-interacting, multiplyinteracting and boosted dark matter candidates and considered neutrino supernovae and quantum mechanics processes
- There is lots of phenomenological and experiential work to be done to improve the preliminary assessment
- Results of these investigations to be published in the SABRE South white paper
- Please get in touch if interested in participating

Backup

Francesco Nuti

Crystal Detector

- Crystal size: 10 cm diameter, 15-25 cm length
- Double PMT readout
- Electromagnetic interaction threshold ~1 keV
- Nuclear recoil threshold ~10 keV
- Detectors positioned in a hexagonal configuration
- 26 cm distance between crystal (axis), 16 cm gap

Liquid Scintillator Detector

- vessel size: ~2.6 m diameter, ~2.6 m height
- 10 tons of linear alkyl benzene scintillator
- electromagnetic interaction threshold ~50 keV
- nuclear recoil threshold ~500 keV
- Some spatial localization and directionality is possible

Muon Detector

- 8 panels: 3000 x 400 x 50 mm3
- Plastic Scintillator EJ200
 (Polyvinyltoluene)
- Some spatial localization of interaction might be possible with limited resolution

Interaction rate

- Target density
- Target mass
- DM density
- DM mass
- DM cross section

- Coupling constants
- DM Form factors
- Nuclear response functions

Pauli Exclusion Principle Violation

R. Bernabei, Eur. Phys. J. C (2009) 62: 327–332

• PEP-violating K-shell electron transitions in iodine atoms

 Non-Paulian emissions of protons with Ep ≥ 10 MeV in
 ²³Na and in ¹²⁷I

PEP-violating transitions and spectra energy-spice

Piscicchia, Addazi, Marciano, Curceanu et al. PRL 129 13 131301 (2022)

PEP-violation from Non-Commutative Quantum Gravity models

deformed transition rate $W_ heta = W_0 \cdot \phi_ ext{PEPV}$

"Electric" components

$$\phi_{\text{PEPV}} = \delta^2 \simeq \frac{D}{2} \frac{E_N}{\Lambda} \frac{\Delta E}{\Lambda} \qquad D = p_1^0 \tilde{\theta}_{0j} p_2^j + p_2^0 \tilde{\theta}_{0j} p_1^j$$
$$E_N \simeq m_N \simeq A m_p \qquad \Delta E = E_2 - E_1$$

"Magnetic" components

 $\phi_{\rm PEPV} = \delta^2 \simeq \frac{C}{2} \frac{\bar{E}_1}{\Lambda} \frac{\bar{E}_2}{\Lambda}$

$$C = p_1^i \tilde{\theta}_{ij} p_2^j$$

E1,2 energy levels occupied by the initial and final electrons

Apply the same strategy as in DAMA, within MeV energy range, to distinguish with more precision PEP-violating lines at higher resolution

C. Ha, arXiv:1811.09344

FIG. 5. Measured 90% CL upper limits from 59.5 days of COSINE-100 data in the L_{lab}^{max} - σ plane are presented for three different benchmark models. These results are compared with the experimental sensitivities of XENON1T with 34.2 days data [45] and DEAP-3600 with 4.4 days data [46] calculated in Ref. [22].

THE UNIVERSITY OF