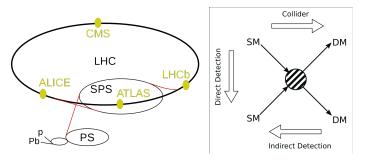
### Recent Results From ATLAS Searches for Dark Matter

# Harish Potti and James Webb, on behalf of the Australian ATLAS group

The ARC Centre of Excellence for Dark Matter Particle Physics & The University of Adelaide

2022 CDM Annual Workshop







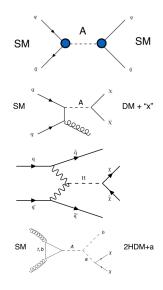

#### **ATLAS: INTRODUCTION**

- ► ATLAS is a general purpose detector. Designed for
  - ► Precision SM measurements
  - ► New physics like **Dark Matter**



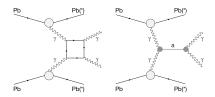

- ightharpoonup Only  $\sim 30/5000$  people are from Australia. Yet, Australian participation in all major areas
  - ▶ Detector building & Operation
  - Trigger
  - Data Preparation
  - ► Software & Computing
  - Physics analyses

#### **CURRENT STATUS**


- ▶ Run-3 of the LHC has been successfully started in July this year at  $\sqrt{s} = 13.6$  TeV.
- ► ATLAS already recorded 35 fb<sup>-1</sup> data this year.
- ▶ By end of 2025, we expect to collect double the amount of data compared to Run-2
- Most of the ongoing physics analyses are still with Run-2 data

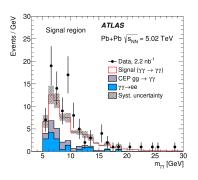


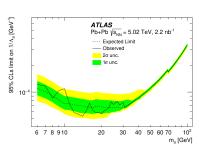



#### ATLAS SEARCHES FOR DARK MATTER

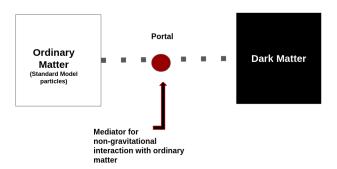
- ► Searches for Mediator Dark Matter
  - Dijet resonances
  - ► Dilepton resonances
- ➤ Searches for Recoiling Dark Matter (X + MET)
  - ► let + MET
  - $ightharpoonup \gamma + MET$
- ► Higgs Portal Models
  - Higgs boson is the mediator and decays to invisible particles
- ▶ Other models:
  - ► 2HDM
  - Light by Light scattering
  - ► SUSY, etc




## AXION-LIKE PARTICLES IN LIGHT-BY-LIGHT SCATTERING


- ► Light by light (LbyL) scattering is a very rare phenomenon.
- ► First observed by the ATLAS experiment in 2019.
- ► Sensitive to axion-like particles (ALP) which can enhance the LbyL cross-section through  $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$  diagrams
- ► JHEP03(2021)243

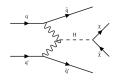



#### LIGHT BY LIGHT SCATTERING

- Measured fiducial crosssection  $\sigma_{fid} = 120 \pm 17 \text{ (stat)} \pm 13 \text{ (sys)} \pm 4 \text{ (lumi)}$  nb. Predicted  $\sigma_{fid} = 80 \pm 8 \text{ nb}$
- ► Best exclusion limits so far over the mass range of 6  $< m_a < 100 \text{ GeV}$





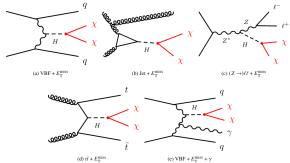

#### HIGGS PORTAL TO DARK SECTOR



- ► Many BSM theories with various mediators
- Higgs boson could be a mediator between ordinary matter and dark matter
- ► Higgs decays into a pair of WIMPs like  $\chi\chi$  in these models.

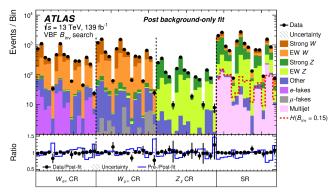
#### **INVISIBLE HIGGS DECAYS**

- ► In the SM,  $B_{inv}(H \rightarrow \text{invisibles}) \sim 0.1\%$  due to  $H \rightarrow ZZ^* \rightarrow 4\nu$
- ▶ In many BSM theories,  $B_{inv}$  is enhanced due to Higgs decays to stable dark matter particles
- ► E.g. SUSY (LSP), large extra dimensions (Graviscalar)
- Events are tagged using the associated production of W/Z or a recoiling jet



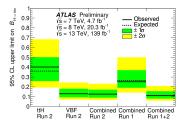

► Higgs boson will be invisible and will be manifested as the "imbalance in momentum in transverse direction" (MET)

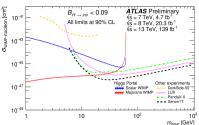
#### $ATLAS H \rightarrow INVISIBLES SEARCHES$


► ATLAS collaboration has performed six independent searches for invisible Higgs decays with full Run-2 data

| Analysis             | Results                         |
|----------------------|---------------------------------|
| VBF+MET              | JHEP 08 (2022) 104              |
| MET+ $Z(\ell\ell)$   | Phys. Lett. B 829 (2022) 137066 |
| $t\bar{t}$ + MET     | ATLAS-CONF-2022-007             |
| $VBF + MET + \gamma$ | Eur. Phys. J. C 82, 105 (2022)  |
| Monojet              | Phys. Rev. D 103, 112006        |
| Run-1 combination    | JHEP11(2015)206                 |
| Combination          | Ongoing                         |




#### VBF + MET ANALYSIS


- Most powerful analysis
- ▶ Distinct characteristic is a pair of energetic jets with wide pseudo-rapidity gap  $(|\eta_{jj}|)$  and a large invariant mass  $(m_{jj})$
- ► Major backgrounds: single vector production + two jets due to QCD radiation
- $ightharpoonup E_T^{
  m miss} > 160~{
  m GeV}$  ,  $p_T^{
  m all-jet} > 140~{
  m GeV}$



#### Results from the $H \rightarrow$ Invisibles Combination

- ▶ Observed (expected) upper limits on the  $B_{inv}$ : 0.11 (0.11)
- ► ATLAS-CONF-2020-052





#### **OUTLOOK**

- Many interesting ATLAS results from dark matter searches performed with full run-2 dataset https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- ► Run-3 has already produced a lot of data at  $\sqrt{s}$  = 13.6 TeV
- ► Detector upgrades for the HL-LHC are ongoing