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Dark Matter: Theory Perspective

● Previously: Theory and Experiment largely driven by weak-scale issues with Standard Model

● Results from Direct Detection and LHC have driven interest in exploring different mass scales

● New approach: what can we do now/soon with existing technologies?



  

Current Direct Detection limits

“Neutrino Floor”

● DM-nucleon scattering Ruled out

APPEC Report

“Low-mass”

https://arxiv.org/pdf/2104.07634.pdf


  

Future Direct Detection limits

“Neutrino Floor”

● DM-nucleon scattering Ruled out

APPEC Report

Liquid-Noble Gas
Experiments

https://arxiv.org/pdf/2104.07634.pdf


  

Direct Detection Kinematics

For a momentum transfer q, the nuclear recoil energy is 

Maximum nuclear recoil energy is 

Akerib et al, 1512.03506 (PRL)

LUX NR Sensitivity

Loss of efficiency for keV nuclear recoils

Lore: Difficult to set nuclear recoil-based 
limits below GeV scale

https://arxiv.org/abs/1512.03506


  

The Migdal Effect

Ibe et al, 1707.07258A. Migdal, 1939, 1941

Electron cloud after recoil

Probability of ionisation

Used central potential, dipole approximation + atomic physics code (FAC)

MJD et al, 1711.09906

https://arxiv.org/abs/1707.07258
https://arxiv.org/abs/1711.09906


  

The Migdal Effect

Cox, Dolan, McCabe, Quiney, in progress 

● Expect dipole approximation to get worse for increasing Z
● Robust predictions for future DD and calibration experiments

● MIGDAL (RAL): 2.5/14 MeV neutrons from DD/DT generators
● Possibility of multiple ionisations
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Nothing happens

Single ionisation

Double ionisation



  

Many Other Ideas

● DM electron scattering → Kurinsky talk

● Dark matter absorption: Final state phonons

Final state photons: Dark Compton Scattering

Limits from neutrino experiments. 
Also: DUNE, SuperK, HyperK

Hochberg et al, 2109.08168

Kahn, Lin, 2108.03239

Dror et al, 2011.1940

Josh Wood, MSc Thesis

Bell, MJD, Robles, 
2005.12950

See alsoHochberg et al, 1604.06800

Final state neutrinos

https://arxiv.org/abs/2109.08168
https://arxiv.org/abs/2108.03239
https://arxiv.org/pdf/2011.01940.pdf
https://arxiv.org/abs/2005.01950
https://arxiv.org/abs/2005.01950
https://arxiv.org/pdf/1604.06800.pdf


  

● ~90% detection efficiency at optical/IR wavelengths
●                       dark count rate

Superconducting Nanowire Single-Photon Detectors (SNSPD)

● Quantum communication/crypto, space communication. Commercially available.

● Wire under some current bias

Hochberg et al, 1903.05101 Holzman, Ivry (review)Hochberg et al, 2110.01586

● Scattering causes departure from equilibrium, causes voltage spike
● Wire returns to superconducting state
● Reset time 

Gol'tsman et al, 2001

https://arxiv.org/abs/1903.05101
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201800058
https://arxiv.org/abs/2110.01586
https://aip.scitation.org/doi/10.1063/1.1388868


  

LAMPOST: SNSPDs as detector

● Use as sensor: optical haloscope for dark photon searches

● Add B-field → axion haloscope (also MADMAX)

● eV dark matter  → optical/IR photons

● 180 hour data taking

● Achieved ~ 2% detection efficiency

Chiles et al, 2110.01582Baryakhtar et al, 1803.11455 Manenti et al (MUDHI), 2110.10497

https://arxiv.org/abs/2110.01582
https://arxiv.org/pdf/1803.11455.pdf
https://arxiv.org/abs/2110.10497


  

SNSPDs as target

● Use as target: DM-e scattering/absorption on SNSPD

● Scattering from thin films: layer small relative to 
momentum transfer, changes layer response.

● Enhancement of cross-section!

● Scalability? Stacks → Directional info?

Hochberg et al, 2110.01586Lasenby et al, 2110.01587

https://arxiv.org/abs/2110.01586
https://arxiv.org/abs/2110.01587


  

Diamonds are for Direct Detection

● Atomic number 12 (compare Si=32, Ge=75, Na=23, I=127)

● Semiconductors: both phonon and charge readout possible

● High velocity, long-lived phonons with long mean-free paths.

● Radiation hardness and high isotopic purity

● OTOH: C14 backgrounds and large band-gap

● Use in quantum sensing, accelerator physics → industrial availability

Kurinsky et al, 1901.07569 Griffin et al, 2008.08560Also: SiC 

Helium
Diamond
Silicon
Xenon

Nuclear scattering limit projections
Dashed: g-day
Dot-dashed: kg-year 

Griffin et al, 1910.10716

https://arxiv.org/abs/1901.07569
https://arxiv.org/abs/2008.08560
https://arxiv.org/pdf/1910.10716.pdf


  

Diamonds are for Direct Detection

● C13: Possibility of spin-dependent sensitivity

● Diamond CCDs? 

● Ideas on directional detection: futuristic

● First cryogenic diamond detector with TES with sample 

Projected limits
Assumes 1 yr exposure

Marshall et al, 2009.01028

Canonica et al, JLTP (2020)

With 
(uncalibrated) 
Fe55 source

https://arxiv.org/abs/2009.01028
https://link.springer.com/article/10.1007/s10909-020-02350-4


  

Outlook

● Push towards low-mass dark matter in direct detection

● New calculations to extend and understand capabilities of current and future 
detectors

● New models extending theory-space

● Application of quantum technologies to achieve lower thresholds



  

Quantum Something

● TESSERACT: build the meta-collaboration around the read-out technology for different detector materials

● Quantum devices becoming an integral part of low-mass dark matter searches.

Liu et al (BREAD), 2111.12103

TESSERACT

https://arxiv.org/abs/2111.12103
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