

First results of the LZ dark matter experiment

Theresa Fruth University of Sydney

ARC Centre of Excellence for Dark Matter Particle Physics Annual Meeting, 23 Nov 2022

LZ collaboration - 35 Institutions: 250 scientists, engineers, and technical staff

Black Hills State University Brookhaven National Laboratory Brown University Center for Underground Physics Edinburgh University Fermi National Accelerator Lab. Imperial College London Lawrence Berkeley National Lab. Lawrence Livermore National Lab.

Northwestern University Pennsylvania State University Royal Holloway University of London SLAC National Accelerator Lab. South Dakota School of Mines & Tech South Dakota Science & Technology Authority STFC Rutherford Appleton Lab. **Texas A&M University University of Albany, SUNY University of Alabama University of Bristol University College London University of California Berkeley University of California Davis University of California Los Angeles University of California Santa Barbara**

University of Liverpool University of Maryland University of Massachusetts, Amherst University of Michigan University of Oxford University of Rochester University of Sheffield University of Sydney University of Wisconsin, Madison US UK Portugal Korea Australia

Thanks to our sponsors!

Fundação para a Ciência e a Tecnologia

U.S. Department of Energy Office of Science

b Institute for Basic Science

LUX-ZEPLIN

Overview

- Principal goal: the direct detection of dark matter via nuclear recoils
- Scintillation & charge (via electroluminescence) signals
- 3D event reconstruction

|Detector TPC

- PTFE field cage
 - 7 tonnes of xenon
 - Optimised for high Field light collection efficiency
- 4 high-voltage grids for
 - drift field
 - extraction region

Assembled TPC

494 TPC PMTs (Hamamatsu R11410-22) Photo: bottom array + field cage

HV grids were woven on a custom-built loom at SLAC

Detector Skin Veto

- Liquid xenon between TPC and inner cryostat vessel
- Instrumented with 131
 PMTs as veto detector
- γ -coincidence veto

Dome PMTs below bottom array

Bottom side skin array & PTFE tiling on cryostat

Detector Outer Detector Veto

- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in the water tank
- Anti-coincidence detector for γ-rays and neutrons
- Observe γ -rays from thermal neutron capture with total energy of up to 8.5 MeV

Completed Outer Detector

Construction & commissioning overview

|First Science Run Overview

Stable detector conditions:

- Temperature = 174.1 K
- Gas pressure = 1.791 bar
- Drift field = 193 V/cm
- Extraction field = 7.3 kV/cm (in gas)
- >97% PMTs operational

Continuous purification:

• 3.3 t/day through hot getter system

Engineering run (data unblinded)

Electron lifetime 5-8 ms throughout

|First Science Run TPC Calibrations

Band fits performed with NEST v2.3.7¹

Photon detection efficiency: g1 = 0.114 +/- 0.002 phd/photon

Ionization channel gain: g2 = 47.1 +/- 1.1 phd/electron

99.9% discrimination of beta backgrounds under NR band median achieved

|First Science Run Outer detector efficiency

Single -scatter neutron tagging efficiency: 88.5±0.7%

- Neutron capture on Gd produces gamma emission of up to 8.5 MeV
- Time delay between neutron scatter in LXe and capture is O(0.1-1 ms)

- OD neutron tagging settings
 - ≥ 200 keV
 - Δt ≤ 1200 µs
- Livetime hit: 5%

¹ <u>https://doi.org/10.1016/j.astropartphys.2020.102480</u>

|First Science Run Background model

ER backgrounds in ROI:

- Dissolved β-emitters
 - ²²²Rn daughters, ⁸⁵Kr
 - ¹³⁶Xe ($2\nu\beta\beta$)
- Dissolved e-captures (mono-energetic x-ray, Auger cascades):
 - ³⁷Ar, ¹²⁷Xe, ¹²⁴Xe
- *γ*-emitters in detector materials
 - ²³⁸U chain, ²³²Th chain, ⁴⁰K, ⁶⁰Co
- Solar neutrinos (ER)
 - pp + 7Be + 13N

NR backgrounds in ROI:

- Neutron emission from spontaneous fission and (α,n)
- ⁸B solar CEvNS

Expected accidental coincidences in ROI:

Coincidence of lone S1 and lone S2 pulses

|First Science Run Background model

Source	Expected Events
β decays + det ER	218 ± 36
$ u { m ER}$	27.3 ± 1.6
127 Xe	9.2 ± 0.8
124 Xe	5.0 ± 1.4
136 Xe	15.2 ± 2.4
${}^8\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01
Accidentals	1.2 ± 0.3
Subtotal	276 ± 36
³⁷ Ar	[0, 291]
Detector neutrons	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	_
Total	_

First Science Run Radon

- Naked ²¹⁴Pb β-decays are the **main** WIMP background •
- Rn emanating from detector materials into TPC xenon •
- Constrain β -decay rate with two methods: • \circ Rn-chain α tagging Spectral fit of all internal BGs outside of energy ROI

²²² Rn (µBq/kg)	²¹⁴ Pb (µBq/kg)	²¹⁴ Po (µBq/kg)
4.37 ± 0.31 (stat)	3.26 ± 0.13(stat) ± 0.57(sys)	2.56 ± 0.21 (stat)

) 200 250 300 350 Reconstructed Energy [keVee]

350

400

450

500

10

|First Science Run 37**A**

- 37 Ar is a significant background in early LZ data ($t_{1/2} = 35$ d)
- Occurs naturally in atmosphere via e.g.
 Ca(n,α)Ar¹, but suppressed during Xe purification by charcoal chromatography
- Produced by cosmic spallation of natural xenon
- Estimating exposure during transport allows calculation of expected activity
 - We expect ~100 decays of ³⁷Ar in SR1 with a large uncertainty.²

|First Science Run Data selection cuts

- events passing all cuts.
- events passing all cuts except for fiducial volume.
- x events failing LXe skin veto cut (mostly ¹²⁷Xe)
- events failing OD tag veto.

Cuts were developed on non-WIMP ROI background & calibration data

|First Science Run Signal acceptance

|First Science Run PLR fits

Source	Expected Events	Best Fit
β decays + det ER	218 ± 36	222 ± 16
$ u { m ER} $	27.3 ± 1.6	27.3 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.2 ± 2.4	15.3 ± 2.4
${}^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
$^{37}\mathrm{Ar}$	[0, 291]	$52.1^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{\pm 0.2}$
$30{ m GeV/c^2}~{ m WIMP}$	_	$0.0^{+0.6}$
Total	_	333 ± 17

Backgrounds within expectations ~25 counts/keVee/tonne/year

keV_{ee} = Electronics-equivalent reconstructed energy

Two sided PLR following conventions: EPJC 81, 907 (2021) ¹ P. Klos, J. Menéndez, D. Gazit, and A. Schwenk Phys. Rev. D 88, 083516 (2013) ² First dark matter search result from the LZ Experiment (<u>https://arxiv.org/abs/2207.03764</u>)

Spin-dependent WIMP-proton scattering

|First Science Run WIMP search (spin-dependent)

Spin-dependent WIMP-neutron scattering

Grey uncertainty band represents uncertainty on Xe form factor ¹

Post Science Run 1 What's next?

- There's much more data to come! Planning for a total 1000 live days (x 17 more exposure than SR1)
- More physics searches to look forward to, among them:
 - Enhanced sensitivity to lower WIMP masses and ⁸B solar neutrinos (S2-only, Migdal)²
 - Low energy electron recoil searches for new physics (ALPs, hidden photons, mirror dark matter & more)³
 - Neutrinoless double-beta decay searches with ¹³⁶Xe & ¹²⁴Xe ^{4,5}

¹LZ WIMP search sensitivity paper: <u>Phys. Rev. D 101, 052002 (2020)</u>
 ²LZ S2-only and Migdal sensitivity: <u>https://arxiv.org/abs/2101.08753 (2021)</u>
 ³LZ low-E ER band searches sensitivity: <u>Phys.Rev.D 104, 092009 (2021)</u>
 ⁴LZ Xe136 0vββ sensitivity: <u>Phys. Rev. C 102, 014602 (2020)</u>
 ⁵LZ Xe124 0vββ sensitivity: <u>Phys. Rev. C 104, 065501 (2021)</u>

Current limit compared to projected sensitivity

Next Generation

Towards the ultimate LXe observatory

- MOU between LZ, XENON, DARWIN
- Successful XLZD meeting 27-29 June 2022 at Karlsruhe Institute of Technology
- https://xlzd.org/
- White paper (2203.02309)

- All LZ systems are performing well and backgrounds are within expectations
- Short engineering run has produced world-leading WIMP limits!

The second se

- Much more to come for LZ:
 - Ultimately planning for 1000 live-days
 - Many more physics searches
- Beyond LZ: xenon community is uniting in XLZD consortium

Backup Doke plot

Doke plot constructed with monoenergetic electron recoil peaks

Backup Accidental coincidences

- Isolated S1s & S2s can accidentally combine to form WIMP ROI events
- Data quality cuts successfully developed to address this background
- To construct PDF, stitch isolated raw pulses together for fake events. Normalised using events with unphysical drift time (i.e. drift time > TPC height)
- Expect 1.2 ± 0.3 events in SR1

Accidental coincidence PDF

10

WIMP

background.

Calibration (both DD and CH3T) and Xe127 M-shell counts (green ellipse) in this region are as expected with our signal acceptance model. => Deficit in WIMP search data appears consistent with under-fluctuation of

27