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       Cosmological constraints on SuperWimps.
Two anomalies in cosmology

Introduction

Recent technological advancements have provided abundant observational data from
the far reaches of the universe leading to a high-precision, testable theory of its origins.
Although the study of the universe dates back to approximately 20, 000 years, the seeds
for modern cosmology were sown after Einstein proposed the theory of general relativity,
which later led to the development of the Friedmann equations based on the cosmological
principle. One of the significant contributions to modern cosmology was by Penzias
and Wilson [1] with their discovery of the Cosmic Microwave Background (CMB) signal.
It was a notable discovery because it provided evidence for the Big Bang model of
the universe and what it is made of. Since then, several ground and satellite-based
experiments have investigated this signal in detail, providing foundational knowledge for
the formation of matter and large-scale structure in the universe. Numerous observations
have confirmed the existence of dark matter but it has yet to reveal its physical secrets.
We now know its existence plays an essential role throughout the evolution of the universe,
especially in the formation of large-scale structures. It has become an integral part of
the standard model that describes the universe, the �CDM - Lambda Cold Dark Matter
model. It was only after the discovery that the universe’s expansion was accelerating
that the �CDM model became a widely established paradigm of cosmology.

In recent decades, experiments such as WMAP [2], Planck [3], SH0ES [4] and the
Hubble Space Telescope Key Project [5] have come to prominence by making precise
measurements of observables of the �CDM model at di�erent epochs. Even then, these
measurements are not without discrepancies. Increased precision in observations has
revealed that the �CDM model is not globally consistent throughout the evolution of
the universe. One of the most interesting and notable cosmological tensions involves the
Hubble parameter, which is related to the universe’s rate of expansion. The early-time
value of Hubble parameter inferred by Planck is H0 = 67.27 ± 0.60 km s≠1 Mpc≠1 [3],
which is currently at more than 5‡ disagreement with the value measured by SH0ES,
H0 = 74.3 ± 2.2 km s≠1 Mpc≠1 [6]. Although the late-time H0 value from the Hubble
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Space Telescope Key Project, H0 = 74.3 ± 2.2 km s≠1 Mpc≠1, is in agreement with
SH0ES, it has reinforced the tension with Planck [7].

In addition to the H0 tension, the parameter for the matter density, ‡8, often written
as S8 © ‡8

Ò
�m/0.3, is also a subject of discrepancy. The growth rate for structure in the

universe given by f = [�m]0.55 is measured by current galaxy redshift space distortions,
which in turn determines the S8 value. Planck’s model inferred parameter value for S8

is 0.834 ± 0.016, higher than the present-time measurements [3]. However, the recently
reported cosmic shear value from the KiDS-1000 experiment is S8 = 0.766+0.020

≠0.014, which
has pushed the tension to ≥ 3‡ [8].

Such tensions indicate the need for revision to the �CDM model, whether as extensions
or unmodelled systematic e�ects [9]. The S8 and the H0 tensions are correlated and
current literature only proposes solutions for resolving them one at a time. For instance,
the late-time measurements of a higher H0 value prefer a lower �m value which modifies
the growth rate of structure parameters and the CMB anisotropies. Consequently, this
induces a higher ‡8 value that disagrees with any early time measurements such as
Planck. As a result, due to mutual correlations and e�ects, it is evident that any analysis
conducted in an attempt to resolve these tensions should be conjoined and performed
with a full range of data and parameters [8].

Multiple anomalies suggest deficiencies in the �CDM model, which was built to
describe all the physics we understand. Due to the vastness and unknownness of the
dark sector, many models containing di�erent properties of dark matter, dark energy and
dark radiation have been explored as possible solutions to the tensions. The wide range
of experiments now available to study the early universe provide adequate constraints
on observables of �CDM while allowing room for modifications to parameters that may
alleviate any tensions. For instance, decaying dark matter (DDM) theories have become
increasingly popular. Based on the substantial presence of cold dark matter today, it has
to be stable on the overall timescale of our universe. However, it is reasonable to predict
that it decays with a long lifetime or that it decays into other dark sector particles within
agreement of measurements today. Moreover, if decaying dark matter has a lifetime
shorter than the universe’s age its signatures may show up in the observations of the
early universe, such as in the CMB anisotropies.

Joining the quest to find a resolution, this work assesses the phenomenology of a
two-step decaying dark matter model; where the decay products of the first decay are a
CDM particle and a photon, and of the second decay are a massive WDM particle and
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cannot simultaneously resolve the Hubble tension. Fi-
nally, we briefly discuss implications of these results for
DM model building, Xenon-1T and the ‘small-scale crisis
of CDM’.

II. COSMOLOGY OF 2-BODY DCDM

Our framework is characterized by two additional free
parameters with respect to ⇤CDM: the DCDM lifetime,
��1, and the fraction of DCDM rest mass energy con-
verted into DR " = (1/2)[1 � m

2
wdm/m

2
dcdm], where

0  "  1/2. " = 0 corresponds to the standard CDM
case (no decay), " = 1/2 to the DM decaying solely into
DR. The general form of the background and linear per-
turbation equations for the DCDM, WDM and DR com-
ponents can be found in Ref. [36, 53]. We reproduce them
in appendix to make this article self-contained.

The dynamics of linear perturbations in the DR com-
ponent is greatly simplified by integrating its phase-space
distribution (PSD) over all the momentum degrees of
freedom [39] (after expanding it over Legendre polyno-
mials). To compute the WDM dynamics one cannot ap-
ply the same strategy, since the integral over the phase
space is not analytic. One must follow the evolution of
the full time- and momentum-dependent PSD, which re-
quires solving O(108) linear di↵erential equations for re-
alistic cosmological analyses. We tackle this issue by de-
vising a new fluid approximation for the WDM species,
based on the treatment of massive neutrinos as a viscous
fluid by Refs. [54, 55], which integrates out the depen-
dency on momenta and reduces the hierarchy of equa-
tions to the first three multipoles on sub-Hubble scales.
All relevant equations, and details about our fluid ap-
proximation, are given in the appendix, and derived in
Ref. [56]. Additionally, we show therein that our ap-
proximation is accurate at the O(1%) level in the matter
power spectrum, and at O(0.1%) precision in the CMB
power spectra.

III. RESOLVING THE S8 TENSION WITH
DCDM

The 2-body ⇤DDM scenario under study is
fully described by the following set of parameters:�
⌦bh

2
, ln

�
1010

As

�
, ns, ⌧reio, ⌦ini

dcdm, H0, Log10 �, Log10 "
 
.

We implement the DDM equations in the publicly avail-
able numerical code CLASS [54, 55], as described
in App. A. We use a shooting method to satisfy
the budget equation. We make use of the code
MONTEPYTHON-v3 [63, 64] to perform a Monte Carlo
Markov chain (MCMC) analysis with a Metropolis-
Hasting algorithm, testing the ⇤DDM model against the
high-` CMB TT, TE, EE ‘lite’+low-` TT,EE+lensing
data from Planck [3], BAO data from 6dF [57],
SDSS DR7 [58], BOSS DR12 (including f�8 mea-
surements) [59], eBOSS DR14 Ly-↵ [60, 61] and

the Pantheon SNIa catalog [62]. Because the full
KIDS1000+BOSS+2dfLenS likelihood in not yet avail-
able, we model it with a split-normal function on
S8 = 0.766+0.02

�0.014 [8]. We expect it to be a good approx-
imation given that the KiDS collaboration concluded
that their S8 value is only weakly sensitive to the
e↵ect of non-zero neutrino masses [65], a model with
features very similar to the ⇤DDM model. (Making
use of S8 = 0.755+0.019

�0.021 from KiDS450+DESY1 [65]
yields similar results.) Note that we neglect the potential
co-variance between S8 and BOSS BAO/FS data for sim-
plicity, and we checked that removing the BAO/FS data
from the analysis does not a↵ect the result. We adopt
the uninformative priors �4  Log10(")  Log10(0.5),
�4  Log10(�/[Gyr�1])  1 and 0  ⌦ini

dcdm  1. To
gauge the importance of the late-time decay in the
success of the solution, we compare the ⇤DDM model
with another cosmological scenario that features a power
suppression at small scales, namely massive neutrinos
(⌫⇤CDM). We model these as three degenerate states
and vary the total mass M⌫ , on top of the standard
⇤CDM parameters. We assess the remaining level of
tension by computing the QDMAP (for “di↵erence in
the maximum a posteriori”) tension metric introduced
in Ref. [66], which essentially (for flat priors) makes
use of the di↵erence in �

2 between the fit of a given
model with and without including the S8 data point.
The tension is then estimated as

p
��2 in unit of �.

Finally, we also compute the Bayesian evidence with the

FIG. 1. Reconstructed 2D posterior distributions of a subset
of parameters in the ⇤DDM and in the ⌫⇤CDM models when
confronted to Planck CMB data [3], BOSS BAO data [57–59],
eBOSS DR14 Ly-↵ [60, 61], the Pantheon SNIa catalog [62]
and a prior on S8 = 0.766+0.02

�0.014 [8] (green band).
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Recent weak lensing surveys have revealed that the direct measurement of the parameter combi-
nation S8 ⌘ �8(⌦m/0.3)0.5 – where �8 is a measure of the amplitude of matter fluctuations on 8
h
�1Mpc scales – is ⇠ 3� discrepant with the value reconstructed from cosmic microwave background

(CMB) data assuming the ⇤CDM model. In this article, we show that it is possible to resolve the
tension if dark matter (DM) decays with a lifetime of ��1 ' 55 Gyrs into one massless and one mas-
sive product, and transfers a fraction " ' 0.7 % of its rest mass energy to the massless component.
The velocity-kick received by the massive daughter leads to a suppression of gravitational clustering
below its free-streaming length, thereby reducing the �8 value as compared to that inferred from the
standard ⇤CDM model, in a similar fashion to massive neutrino and standard warm DM. Contrarily
to the latter scenarios, the time-dependence of the power suppression and the free-streaming scale
allows the 2-body decaying DM scenario to accommodate CMB, baryon acoustic oscillation, growth
factor and un-calibrated supernova Ia data. We briefly discuss implications for DM model build-
ing, galactic small-scale structure problems and the recent Xenon-1T excess. Future experiments
measuring the growth factor to high accuracy at 0 . z . 1 can further test this scenario.

I. INTRODUCTION

The standard ⇤-cold dark matter (⇤CDM) cosmolog-
ical model provides a remarkable fit to a wide variety of
observables, such as big bang nucleosynthesis (BBN), the
cosmic microwave background (CMB), large-scale struc-
tures (LSS), baryonic acoustic oscillations (BAO), and
uncalibrated supernovae of type Ia (SNIa) (see e.g. [1, 2]
for reviews). Nevertheless, tremendous experimental de-
velopments have revealed curious discrepancies between
di↵erent probes. At the heart of this study is the grow-
ing tension between the cosmological and local determi-
nation of the amplitude of the matter fluctuations on 8
h

�1/Mpc scales, typically described through the param-
eter combination S8 ⌘ �8(⌦m/0.3)0.5. Within ⇤CDM,
the latest S8 value inferred from a fit to CMB data [3]
is ⇠ 2 � 3� higher than that measured by a host of
weak lensing surveys such as CFHTLenS [4], HSC [5],
DES [6] and KiDS+Viking [7]. In particular, the recent
joint analysis of KIDS1000+BOSS+2dfLenS has yielded
S8 = 0.766+0.020

�0.014 [8], in ⇠ 3� discrepancy with ⇤CDM
from Planck. While an unknown systematic e↵ect at the
origin of this discrepancy is not excluded, the existence of
several independent observations disfavoring the ⇤CDM
predictions strengthen the case for new physics. In this
article, we show that the S8 tension can be resolved if DM
experiences 2-body decays where the decay products are
one massive warm DM (WDM) particle and one (mass-
less) dark radiation (DR) component. We will refer to the
full model as ⇤DDM. We find that it requires decaying
cold DM (DCDM) to have a lifetime of ��1 ' 55 Gyrs
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and to transfer a fraction " ' 0.7 % of its rest mass en-
ergy into the DR species. Interestingly, depending on the
velocity-kick received by the massive daughter, this sce-
nario could help resolving some of the sub-galactic scales
issues in ⇤CDM (e.g. Refs. [9–17]) or could explain the
recent Xenon-1T excess [18, 19].

Many authors have attempted to explain the S8 ten-
sion through new properties of DM (see, e.g., [20–35]).
Scenarios where the DM decays only into DR have been
discussed in this context, but have been shown to be at
odds with the latest Planck CMB lensing and BAO data
[36–41]. The extension of these studies to the case of
a massive daughter was recently performed in Ref. [33],
where it was suggested that this scenario could resolve
the ‘Hubble tension’ – This refers to the ⇠ 5� discrep-
ancy between the value of the current expansion rate of
the universe inferred from Planck data [3] under ⇤CDM,
and that measured using the cosmic distance ladder [42–
47], although not all measurements show such discrep-
ancy [48–50]. However, a recent series of analysis has
shown that a combination of BAO, uncalibrated SNIa
[51] and Planck data [52] excludes this model. Yet, au-
thors of Refs. [33, 51, 52] have limited their analyses to
the ⇤DDM background evolution, or neglected the per-
turbations of the massive daughter particles.

In this work, we perform the first thorough analysis of
the ⇤DDM including a realistic treatment of linear cos-
mological perturbations. Our careful treatment of the
warm daughter perturbations allows us to pin down the
space of parameters resolving the S8-tension. Indeed, the
warm component produced by decay leads to a suppres-
sion of the matter power spectrum at late times, similar
to that of massive neutrinos or standard WDM. How-
ever, contrarily to the latter scenarios, the specific time-
dependence of the power suppression imprinted by the
decay allows to accommodate Planck, BAO, uncalibrated
SN1a and S8 measurements, though we confirm that it
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nation S8 ⌘ �8(⌦m/0.3)0.5 – where �8 is a measure of the amplitude of matter fluctuations on 8
h
�1Mpc scales – is ⇠ 3� discrepant with the value reconstructed from cosmic microwave background

(CMB) data assuming the ⇤CDM model. In this article, we show that it is possible to resolve the
tension if dark matter (DM) decays with a lifetime of ��1 ' 55 Gyrs into one massless and one mas-
sive product, and transfers a fraction " ' 0.7 % of its rest mass energy to the massless component.
The velocity-kick received by the massive daughter leads to a suppression of gravitational clustering
below its free-streaming length, thereby reducing the �8 value as compared to that inferred from the
standard ⇤CDM model, in a similar fashion to massive neutrino and standard warm DM. Contrarily
to the latter scenarios, the time-dependence of the power suppression and the free-streaming scale
allows the 2-body decaying DM scenario to accommodate CMB, baryon acoustic oscillation, growth
factor and un-calibrated supernova Ia data. We briefly discuss implications for DM model build-
ing, galactic small-scale structure problems and the recent Xenon-1T excess. Future experiments
measuring the growth factor to high accuracy at 0 . z . 1 can further test this scenario.

I. INTRODUCTION

The standard ⇤-cold dark matter (⇤CDM) cosmolog-
ical model provides a remarkable fit to a wide variety of
observables, such as big bang nucleosynthesis (BBN), the
cosmic microwave background (CMB), large-scale struc-
tures (LSS), baryonic acoustic oscillations (BAO), and
uncalibrated supernovae of type Ia (SNIa) (see e.g. [1, 2]
for reviews). Nevertheless, tremendous experimental de-
velopments have revealed curious discrepancies between
di↵erent probes. At the heart of this study is the grow-
ing tension between the cosmological and local determi-
nation of the amplitude of the matter fluctuations on 8
h

�1/Mpc scales, typically described through the param-
eter combination S8 ⌘ �8(⌦m/0.3)0.5. Within ⇤CDM,
the latest S8 value inferred from a fit to CMB data [3]
is ⇠ 2 � 3� higher than that measured by a host of
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DES [6] and KiDS+Viking [7]. In particular, the recent
joint analysis of KIDS1000+BOSS+2dfLenS has yielded
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�0.014 [8], in ⇠ 3� discrepancy with ⇤CDM
from Planck. While an unknown systematic e↵ect at the
origin of this discrepancy is not excluded, the existence of
several independent observations disfavoring the ⇤CDM
predictions strengthen the case for new physics. In this
article, we show that the S8 tension can be resolved if DM
experiences 2-body decays where the decay products are
one massive warm DM (WDM) particle and one (mass-
less) dark radiation (DR) component. We will refer to the
full model as ⇤DDM. We find that it requires decaying
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and to transfer a fraction " ' 0.7 % of its rest mass en-
ergy into the DR species. Interestingly, depending on the
velocity-kick received by the massive daughter, this sce-
nario could help resolving some of the sub-galactic scales
issues in ⇤CDM (e.g. Refs. [9–17]) or could explain the
recent Xenon-1T excess [18, 19].

Many authors have attempted to explain the S8 ten-
sion through new properties of DM (see, e.g., [20–35]).
Scenarios where the DM decays only into DR have been
discussed in this context, but have been shown to be at
odds with the latest Planck CMB lensing and BAO data
[36–41]. The extension of these studies to the case of
a massive daughter was recently performed in Ref. [33],
where it was suggested that this scenario could resolve
the ‘Hubble tension’ – This refers to the ⇠ 5� discrep-
ancy between the value of the current expansion rate of
the universe inferred from Planck data [3] under ⇤CDM,
and that measured using the cosmic distance ladder [42–
47], although not all measurements show such discrep-
ancy [48–50]. However, a recent series of analysis has
shown that a combination of BAO, uncalibrated SNIa
[51] and Planck data [52] excludes this model. Yet, au-
thors of Refs. [33, 51, 52] have limited their analyses to
the ⇤DDM background evolution, or neglected the per-
turbations of the massive daughter particles.

In this work, we perform the first thorough analysis of
the ⇤DDM including a realistic treatment of linear cos-
mological perturbations. Our careful treatment of the
warm daughter perturbations allows us to pin down the
space of parameters resolving the S8-tension. Indeed, the
warm component produced by decay leads to a suppres-
sion of the matter power spectrum at late times, similar
to that of massive neutrinos or standard WDM. How-
ever, contrarily to the latter scenarios, the specific time-
dependence of the power suppression imprinted by the
decay allows to accommodate Planck, BAO, uncalibrated
SN1a and S8 measurements, though we confirm that it
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generate massive neutrinos of total mass M⌫ = 0.27 eV
(we adjust !cdm = 0.1154 whereas all other parameters
are fixed to the baseline ⌫⇤CDM model), which yields
�8 ' 0.75 and ⌦m ' 0.31, in agreement with weak
lensing data [8]. These scenarios feature two key dif-
ferences: i) a distinct redshift evolution for the power
suppression. In the ⇤DDM scenario, it is less significant
at higher redshifts, since the abundance of the WDM
daughter is smaller; ii) a time-evolving cut-o↵ scale; in
the ⇤DDM model, kfs =

p
3/2H(a)/cg(a), while in the

⌫⇤CDM it is obtained by evaluating kfs at the redshift at
which neutrinos become non-relativistic [20]. As a con-
sequence, the CMB power spectra, well constrained by
Planck, are vastly di↵erent. This is illustrated in Fig. 2
bottom panel, for both the best-fit ⇤DDM scenario and
the ⌫⇤CDM model which yields the same S8 value. The
⌫⇤CDM predicts di↵erent early-integrated Sachs-Wolfe
e↵ects, as well as di↵erent amount of lensing, because
of a significant power suppression at z ⇠ 2 � 3, where
the CMB lensing kernel peaks [74]. On the other hand,
the di↵erences between ⇤CDM and ⇤DDM until z ⇠ 2
are very small, explaining why Planck cannot disentangle
between the two scenarios. Detecting the DDM through
its impact on CMB power spectra will be challenging, al-
though CMB lensing measurements accurate at the ⇠ 1%
level could help (e.g. with CMB-S4 [74]). We address
the reader to Ref. [56], that contains an analysis where a
DDM signal is artificially imprinted in a set of mock CMB
data, explicitly showing that such a signal – while being
below the sensitivity of current CMB surveys – would
instead be captured by CMB-S4. Furthermore, the dif-
ferences between the growth rate f�8 in ⇤DDM scenario
and ⇤CDM (shown in Fig. 3) at 0 . z . 1, while below
the sensitivity of current experiments measuring, could
be measured by upcoming surveys such as Euclid [75],
LSST [76], and DESI [77].

V. SOME IMPLICATIONS OF THE DCDM

Concrete realizations of ⇤DDM scenarios as the ones
considered in this work may arise for instance in the con-
text of the ‘super weakly interacting massive particle’
(superWIMP) class of exotic particle physics models [78–
80], whose super weak couplings make them evade many
observational constraints [81–83]. The decaying parti-
cle must have properties similar to CDM candidates,
which sets a lower mass bound of m & 5 keV if it is
thermally produced in the early universe [84–88], raising
to the MeV mass scale depending on couplings to stan-
dard model particles [89] (irrelevant for thermal produc-
tion in hidden sectors [90]). For non-thermally produced
fermions, the Tremaine-Gunn limit [91] of m & 1 keV
[92] applies.

Interestingly, late decays of CDM to WDM are among
the proposed cures to some observational discrepancies
with CDM on small (sub-galactic) scales after structure
formation (e.g. [9–16], and e.g. [93–98] for reviews on

small-scale issues). A detailed inspection of the e↵ec-
tive parameter space was performed in Ref. [99], which
was later supplemented by dedicated cosmological sim-
ulations [17], showing that this scenario mostly a↵ects
galaxy satellite/subhalo properties. In particular, a
daughter particle speed 3 ⇥ 10�5 . v ' " . 2 ⇥ 10�3

may reduce the abundance of subhalos and their concen-
trations for a large range of lifetimes, up to ⇠ 100 Gyr.
Greater speeds are disfavored from the existence of dwarf
galaxies (see also [100]), unless ��1 & 100 Gyrs, for which
⇤DDM does not depart from ⇤CDM as far as structure
formation is concerned (this also holds for very low speeds
irrespective of �). Further constraining our favored range
for ⇤DDM models along those lines would require to pre-
dict the non-linear matter power spectrum, which goes
beyond the scope of this paper (An improved mildly non-
linear computation could also benefit the modeling of the
lensing signal, including CMB lensing.). However, our
best-fitting parameters do fall in ranges that could partly
address small-scale CDM challenges.

Remarking from our results that the 1-� range
for the speed of the daughter particle extends to
v ' " ⇠ 0.05, brings up the intriguing possibility
that this scenario may be connected with the excess
events in the electronic recoils recently reported by the
Xenon-1t Collaboration [18]. This excess, if interpreted
in terms of elastic interactions of DM with electrons,
would point to DM particles of mass m & 1 MeV with
unexpected high speeds of v ⇠ 0.1 [19, 101]. In our
scenario, this would set the mass scale for the parent
CDM particle mdcdm = mwdm/

p
1 � 2". This can be

achieved in both thermal and non-thermal production
scenarios for the DCDM particle, with the latter fa-
vored for mdcdm . 10 MeV to prevent it from being
warm. The contact interaction cross section of the
warm daughter with electrons is constrained to be �e ⇠

FIG. 3. Growth rate of matter fluctuations for our baseline
⌫⇤CDM model (solid line), compared to the best-fit ⇤DDM
model (dashed line) and to the ⌫⇤CDM scenario yielding the
same �8 and ⌦m (dotted line). The observational constraints
are taken from Ref. [3] and references therein.

: Very small at low redshifts , and therefore Planck cannot distinguish them 
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by decrease in �8 with ⌦m una↵ected, which is better in
making agreement with the BOSS galaxy clustering con-
straint on (⌦m,�8) where the degeneracy between the
two gets broken [51].

The physics behind this resolution is nothing but the
suppression of the growth of the matter fluctuation at
k ⇠ 0.1�1hMpc�1 caused by the free-streaming of the
massive decay product when compared to the ⇤CDM
model prediction. Namely, the way for causing the sup-
pression is identical to that of a usual WDM scenario.
Yet, the DDM scenario is distinguished from the typical
WDM scenario in that the time-dependency is found in
both of the amount of the suppression and the cut-o↵
scale in the matter power spectrum [41]. For that rea-
son the suppression of the linear matter power spectrum
can be delayed until the time as late as z ⇠ 2 � 3 for a
large enough ��1

cdm
and a small enough ⇠. In that case,

the DDM scenario becomes closer to ⇤CDM model in
its e↵ect on CMB power spectrum with ` & O(10) by
avoiding to cause a significant early integrated Sachs-
Wolfe e↵ect and in its prediction for the growth rate
(f�8 ⌘ (d ln �m/d ln a)�8) for the time z & 1. With these
distinctions between the DDM and the WDM scenarios,
the potential significant late integrated Sachs-Wolfe ef-
fect on the CMB anisotropy power spectrum for low `

regime (` ⇠ 10) is expected to be caused by the late time
decay of the DDM and it further distinguishes the DDM
and the usual WDM scenarios.

Now inspired by the above phenomenologically com-
pelling resolution to S8, a natural question from the par-
ticle physics side is whether there exists a well-motivated
BSM model accommodating the DDM scenario address-
ing the S8 tension. Obviously one challenging point in an-
swering the question concerns the non-trivial mass spec-
trum of the three ingredients. We notice that the best-fit
value of ⇠ ' 7⇥ 10�3 is converted to 1% mass di↵erence
between the mother CDM and the massive decay prod-
uct. In the next section, we demonstrate that the model
presented in Sec. II can naturally realize the phenomeno-
logical DDM scenario alleviating the S8 tension when the
assumed Z4 symmetry is the gauge symmetry.

B. Model II

With the basic set-up presented in Sec. II and the dis-
crete symmetry Z4 specified as the gauged one,12 the
model II presented in this section does not have the ad-
ditional superpotential terms given in Eq. (4). Thus,
even after the spontaneous breaking of U(1)B�L at the
energy scale around VB�L ⇠ 1015GeV, the right-handed
neutrino N1 still remains massless. Because of this, sneu-
trino Ñ1 also remains massless until the SUSY-breaking
takes place.

12
Z4 in our model does not su↵er from any gauge anomaly.

Given this set-up, we find that this situation is
well suited for realizing the DDM scenario discussed in
Sec. IVA. Ñ1 is expected to obtain a mass once the
SUSY-breaking takes place and is mediated to Ñ1. Now
the soft mass of Ñ1 can be very close to a mass of grav-
itino provided it is dominantly generated by the gravity
mediation. Remarkably since Ñ1 is the SM gauge singlet,
even if we are to explain heavy enough mass spectrum for
the sparticles in the MSSM consistent with the null ob-
servation of SUSY particles in the LHC by relying on a
gauge mediation, the soft-mass of Ñ1 can be easily domi-
nated by the gravity mediation contribution provided we
assume messengers are singlets under U(1)B�L. Along
this line of reasoning, we see that the coupling between
the gravitino, Ñ1 and N1 in our model can be an excel-
lent candidate of the concrete particle physics example
realizing the DDM scenario resolving the S8 tension.13

For mapping to our model the phenomenological best-
fit values of (��1

cdm
, ⇠) = (56Gyrs, 7 ⇥ 10�3), we refer to

the rate of the gravitino decay to Ñ1 and N1 [52]

�(G̃µ ! Ñ1 +N1) =
m

3

3/2

192⇡M2

P

⇥

1�

✓
m1

m3/2

◆�2 "
1�

✓
m1

m3/2

◆2
#3

.

(12)

where m1 is the soft mass of Ñ1. The replacement of the
mass ratio m1/m3/2 with

p
1� 2⇠ and the substituting

the best-fit value in Eq. (12) yield m3/2 ' 216GeV. The
SUSY-breaking scale read from this m3/2 amounts to

m3/2 =
|F |p
3MP

' 216GeV ! |F | ' O(1021)GeV2
.

(13)
For the gravitino with m3/2 ' 216GeV to explain the

current DM relic density, we notice that the high enough
reheating temperature is necessarily required as shown
below. When scattering and decay processes involved
with strong and EW gauge interactions and top Yukawa
coupling are taken into account for gravitino thermal pro-
duction, the thermal gravitino relic abundance is given
by [53, 54]

⌦3/2h
2 = 0.217

✓
TRH

107GeV

◆✓
100GeV

m3/2

◆✓
mg̃(µ)

10TeV

◆2

,

(14)
where mg̃(µ) is the running gluino mass and the uni-
versal gaugino mass relation was used to write ⌦3/2h

2

13 Another possibility is to consider the MSSM extended by an
anomalous global U(1)PQ symmetry (anomalous with respect
to either SU(3)c or SU(2)L). If the axino is the LSP of the
model, the coupling between gravitino, axion and axino can be
also invoked to make the gravitino DDM candidate. See Refs. [44,
52].
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Consider a gravitino CDM populated thermally in the early universe through scatterings
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scale in the matter power spectrum [41]. For that rea-
son the suppression of the linear matter power spectrum
can be delayed until the time as late as z ⇠ 2 � 3 for a
large enough ��1

cdm
and a small enough ⇠. In that case,

the DDM scenario becomes closer to ⇤CDM model in
its e↵ect on CMB power spectrum with ` & O(10) by
avoiding to cause a significant early integrated Sachs-
Wolfe e↵ect and in its prediction for the growth rate
(f�8 ⌘ (d ln �m/d ln a)�8) for the time z & 1. With these
distinctions between the DDM and the WDM scenarios,
the potential significant late integrated Sachs-Wolfe ef-
fect on the CMB anisotropy power spectrum for low `

regime (` ⇠ 10) is expected to be caused by the late time
decay of the DDM and it further distinguishes the DDM
and the usual WDM scenarios.

Now inspired by the above phenomenologically com-
pelling resolution to S8, a natural question from the par-
ticle physics side is whether there exists a well-motivated
BSM model accommodating the DDM scenario address-
ing the S8 tension. Obviously one challenging point in an-
swering the question concerns the non-trivial mass spec-
trum of the three ingredients. We notice that the best-fit
value of ⇠ ' 7⇥ 10�3 is converted to 1% mass di↵erence
between the mother CDM and the massive decay prod-
uct. In the next section, we demonstrate that the model
presented in Sec. II can naturally realize the phenomeno-
logical DDM scenario alleviating the S8 tension when the
assumed Z4 symmetry is the gauge symmetry.

B. Model II

With the basic set-up presented in Sec. II and the dis-
crete symmetry Z4 specified as the gauged one,12 the
model II presented in this section does not have the ad-
ditional superpotential terms given in Eq. (4). Thus,
even after the spontaneous breaking of U(1)B�L at the
energy scale around VB�L ⇠ 1015GeV, the right-handed
neutrino N1 still remains massless. Because of this, sneu-
trino Ñ1 also remains massless until the SUSY-breaking
takes place.

12
Z4 in our model does not su↵er from any gauge anomaly.

Given this set-up, we find that this situation is
well suited for realizing the DDM scenario discussed in
Sec. IVA. Ñ1 is expected to obtain a mass once the
SUSY-breaking takes place and is mediated to Ñ1. Now
the soft mass of Ñ1 can be very close to a mass of grav-
itino provided it is dominantly generated by the gravity
mediation. Remarkably since Ñ1 is the SM gauge singlet,
even if we are to explain heavy enough mass spectrum for
the sparticles in the MSSM consistent with the null ob-
servation of SUSY particles in the LHC by relying on a
gauge mediation, the soft-mass of Ñ1 can be easily domi-
nated by the gravity mediation contribution provided we
assume messengers are singlets under U(1)B�L. Along
this line of reasoning, we see that the coupling between
the gravitino, Ñ1 and N1 in our model can be an excel-
lent candidate of the concrete particle physics example
realizing the DDM scenario resolving the S8 tension.13

For mapping to our model the phenomenological best-
fit values of (��1

cdm
, ⇠) = (56Gyrs, 7 ⇥ 10�3), we refer to

the rate of the gravitino decay to Ñ1 and N1 [52]
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where m1 is the soft mass of Ñ1. The replacement of the
mass ratio m1/m3/2 with

p
1� 2⇠ and the substituting

the best-fit value in Eq. (12) yield m3/2 ' 216GeV. The
SUSY-breaking scale read from this m3/2 amounts to

m3/2 =
|F |p
3MP

' 216GeV ! |F | ' O(1021)GeV2
.

(13)
For the gravitino with m3/2 ' 216GeV to explain the

current DM relic density, we notice that the high enough
reheating temperature is necessarily required as shown
below. When scattering and decay processes involved
with strong and EW gauge interactions and top Yukawa
coupling are taken into account for gravitino thermal pro-
duction, the thermal gravitino relic abundance is given
by [53, 54]
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where mg̃(µ) is the running gluino mass and the uni-
versal gaugino mass relation was used to write ⌦3/2h

2

13 Another possibility is to consider the MSSM extended by an
anomalous global U(1)PQ symmetry (anomalous with respect
to either SU(3)c or SU(2)L). If the axino is the LSP of the
model, the coupling between gravitino, axion and axino can be
also invoked to make the gravitino DDM candidate. See Refs. [44,
52].
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       Cosmological constraints on SuperWimps.

What if the reheating temperature is low ? Thermal processes are suppressed 
 
Gravitino abundance is populated non thermally through decays  

strongly interacting gluino-gravitino-gluon vertex (along with sub-dominant electro-

weakino scatterings). The relic density is proportional to the reheating temperature,

given by,
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i

ciMi (3)

where Trh is the reheating temperature, m3/2 the gravitino mass, ci are order one

coe�cients, while Mi are gaugino masses. Thus if the reheating temperature is low,

the thermal gravitino abundance is suppressed in the early universe. Viewed from

the other angle, the requiremenet that we do not overclose the universe sets an upper

bound on the reheating temperature for a given gravitino mass.

The SuperWIMP mechanism is therefore a more e�cient way of achieving the observed

relic density of the universe , if the the gravitino is the LSP. The frozen out NSLP can

then decay late to populate the gravitino.

The most well motivated NLSP is the lightest neutralino (�0
1), which can freeze out

via a variety of mechanisms. We take this to be a free parameter in this study, with

the only requirement being that it reproduces the observed relic. The two body decay

width �0
1 ! G̃� is given by,
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where ✓W is the Weinberg angle, and MP the reduced Planck mass. In the limit where

the gravitino and the bino mass is close enough, the lifetime is approximately,
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assuming mG̃ ' m�0
1
� 100 GeV. Since the decay width is Planck scale suppressed,

large decay widths and therefore short lifetimes can only be achieved if there is a large

mass hierarchy between the gravitino and the Bino. However, this also means that

the energy of released photon also is significantly large, which has severe consequences

in cosmology. Let’s then rewrite the expression for energy injection in terms of the

energy of the photon. Assuming that the Bino decays at rest, the photon energy is

simply,

E� =

m2
�0
1
�m2

G̃

2m�0
1

(6)
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Energy released in Photons
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.

Let’s also define the fractional energy injected as,

ESM = E�/m�0
1

(7)

.

The decay width can then be written as
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Equivalently, we can rewrite the gravitino mass in terms of the injected energy fraction,

as mG̃ ⌘ m�0
1

p
1� 2ESM.

1
.

Note that for short lifetimes (large decay widths), we need a large hierarchy between

the Bino and the gravitino mass, i.e, a ESM implies a lighter gravitino mass.

Similar considerations apply for slepton-gravitino systems. The slepton decay width

to gravitino and a photon is given by,
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In terms of the SM energy released, this can be rewritten as
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Here, it is important to distinguish between various various leptonic species.The elec-

tron assiciated with the selectron decay will immediately initiate an electromagnetic

cascade, and therefore the entirety of the released energy is converted into electromag-

netic energy. For smuons, the associated muons interact with the background photon

with an associated Thomson scattering cross section. As long as the interaction time

is shorter than the time dilated muon decay time, we can safely assume that all of the

1
When kinematically viable, there is an additional decay channel to Z bosons. However this decay channel

is suppressed by a factor 4 due to phase space and a sin
2
(✓W) factor. We therefore ignore this decay width

for this work. As we will observe, this decay can only make the constraint stronger for large mass gaps and

therefore short life times.
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Fractional energy

Energy deposited in the thermal plasma causes spectral distortions



       Cosmological constraints on SuperWimps.

Spectral Distortions

Energy Injection Constraints

Distortions of  the Blackbody spectrum of the primordial photon bath

Energy injection and deposition into the Intergalactic Medium (IGM)

The three main eras visible in the left panel of Figure 1 are the y, µ, and g eras. For
redshifts higher than
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most of the injected energy tends to fully thermalize as the number count changing processes
of DC and BR are very e�cient [24, 96]. Hence, mostly temperature shifts will be caused,
and the era is named the g or thermal era. For redshifts between z = zµy ⇡ 5 ⇥ 104 and
z = zth, the number count changing processes become ine�cient, while CS is still e�cient.
This is the so-called µ era, during which the dominant contribution will be a µ distortion.
The final era is the y era, where CS is ine�cient and the injected energy is only partially
redistributed, so that a y distortion is created. This era lasts between z = zµy and today.
Finally, the residual distortions R(x) account for deviations from this simplified picture. The
corresponding shapes of the distortions at di↵erent times can be seen in the right panel of
Figure 1.

2.4 Causes of the distortions

As shown in the previous section, the magnitude of the final observed SDs has a complete
and unique dependence on the heating history of the universe, which can be parameterized
using the heating rate Q̇. To better understand how to calculate this heating rate, we start
with a general discussion regarding the di↵erence between injected and deposited energy in
Section 2.4.1, and then focus on energy deposition into heating in Section 2.4.2. Furthermore,
in Section 2.4.3 we discuss the di↵erent injection mechanisms predicted by the standard
⇤CDM model. This catalogue relies on the work of many recent publications like [26, 31, 39].
Finally, in Section 2.4.4 we additionally discuss a few of the most common non-standard
injection mechanisms.

2.4.1 Injection and deposition

The energy injection into the intergalactic medium (IGM) through various processes does
not necessarily immediately heat the IGM and the photon bath. As such, we di↵erentiate
energy injection, energy deposition, and various deposition channels. The injected energy is
the energy released by a given process. The deposited energy is the fraction of this energy
that eventually a↵ects the medium after the radiative transfer and electron cooling. The
deposition channels (labelled by an index c) describe the final impacts on the IGM.

The deposition function fc(z) represents the fraction of injected energy that is deposited
in channel c at redshift z. It can be decomposed into an injection e�ciency function fe↵(z)
and a deposition fraction �c(z), with all deposition fractions across all channels summing
up to one,

P
c
�c(z) = 1. The deposition fraction usually depends only on the free electron

fraction xe at a given redshift, and can thus be written as �c(xe(z)). In summary, the
injection and deposition rates are related through

dE

dtdV

����
dep,c

=
dE

dtdV

����
inj

fc =
dE

dtdV

����
inj

fe↵ �c ⌘ Q̇ �c , (2.36)

where we have defined the e↵ective rate of energy injection Q̇ as a useful shorthand. It should
not be confused with Q̇, which is the e↵ective heating term (see also Equation (2.37)).
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and unique dependence on the heating history of the universe, which can be parameterized
using the heating rate Q̇. To better understand how to calculate this heating rate, we start
with a general discussion regarding the di↵erence between injected and deposited energy in
Section 2.4.1, and then focus on energy deposition into heating in Section 2.4.2. Furthermore,
in Section 2.4.3 we discuss the di↵erent injection mechanisms predicted by the standard
⇤CDM model. This catalogue relies on the work of many recent publications like [26, 31, 39].
Finally, in Section 2.4.4 we additionally discuss a few of the most common non-standard
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2.4.1 Injection and deposition

The energy injection into the intergalactic medium (IGM) through various processes does
not necessarily immediately heat the IGM and the photon bath. As such, we di↵erentiate
energy injection, energy deposition, and various deposition channels. The injected energy is
the energy released by a given process. The deposited energy is the fraction of this energy
that eventually a↵ects the medium after the radiative transfer and electron cooling. The
deposition channels (labelled by an index c) describe the final impacts on the IGM.

The deposition function fc(z) represents the fraction of injected energy that is deposited
in channel c at redshift z. It can be decomposed into an injection e�ciency function fe↵(z)
and a deposition fraction �c(z), with all deposition fractions across all channels summing
up to one,

P
c
�c(z) = 1. The deposition fraction usually depends only on the free electron

fraction xe at a given redshift, and can thus be written as �c(xe(z)). In summary, the
injection and deposition rates are related through

dE

dtdV

����
dep,c

=
dE

dtdV

����
inj

fc =
dE

dtdV

����
inj

fe↵ �c ⌘ Q̇ �c , (2.36)

where we have defined the e↵ective rate of energy injection Q̇ as a useful shorthand. It should
not be confused with Q̇, which is the e↵ective heating term (see also Equation (2.37)).
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There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments.
We propose to explain this anomaly by a dark decay channel for the neutron, involving one or more dark
sector particles in the final state. If any of these particles are stable, they can be the dark matter. We construct
representative particle physics models consistent with all experimental constraints.

INTRODUCTION

The neutron is one of the fundamental building blocks of
matter. Along with the proton and electron it makes up most
of the visible universe. Without it, complex atomic nuclei sim-
ply would not have formed. Although the neutron was discov-
ered over eighty years ago [1] and has been studied intensively
thereafter, its precise lifetime is still an open question [2, 3].
The dominant neutron decay mode is � decay

n ! p+ e�+ ⌫̄e ,

described by the matrix element

M = 1p
2
GFVud gV [ p̄ �µn� � p̄ �5�µn ] [ ē �µ(1� �5)⌫ ] .

The theoretical estimate for the neutron lifetime is [4–7]

⌧n =
4908.7(1.9) s

|Vud|
2(1 + 3�2)

.

The Particle Data Group (PDG) world average for the axial-
vector to vector coupling ratio is � = �1.2723 ± 0.0023 [8].
Adopting the PDG average |Vud| = 0.97417± 0.00021 gives
⌧n between 875.3 s and 891.2 s within 3�.

There are two qualitatively different types of direct neutron
lifetime measurements: bottle and beam experiments.

In the first method, ultracold neutrons are stored in a con-
tainer for a time comparable to the neutron lifetime. The re-
maining neutrons that did not decay are counted and fit to a
decaying exponential, exp(�t/⌧n). The average from the five
bottle experiments included in the PDG [8] world average is
[9–13]

⌧bottlen = 879.6± 0.6 s .

Recent measurements using trapping techniques [14, 15] yield
a neutron lifetime within 2.0� of this average.

In the beam method, both the number of neutrons N in a
beam and the protons resulting from � decays are counted,
and the lifetime is obtained from the decay rate, dN/dt =
�N/⌧n. This yields a considerably longer neutron lifetime;
the average from the two beam experiments included in the
PDG average [16, 17] is

⌧beamn = 888.0± 2.0 s .

The discrepancy between the two results is 4.0�. This sug-
gests that either one of the measurement methods suffers from
an uncontrolled systematic error, or there is a theoretical rea-
son why the two methods give different results.

In this paper we focus on the latter possibility. We as-
sume that the discrepancy between the neutron lifetime mea-
surements arises from an incomplete theoretical description
of neutron decay and we investigate how the Standard Model
(SM) can be extended to account for the anomaly.

NEUTRON DARK DECAY

Since in beam experiments neutron decay is observed by
detecting decay protons, the lifetime they measure is related
to the actual neutron lifetime by

⌧beamn =
⌧n

Br(n ! p+ anything)
. (1)

In the SM the branching fraction (Br), dominated by � decay,
is 100% and the two lifetimes are the same. The neutron decay
rate obtained from bottle experiments is

�n ' 7.5⇥ 10�28 GeV.

The discrepancy �⌧n ' 8.4 s between the values measured in
bottle and beam experiments corresponds to [18]

��exp
n = �bottle

n � �beam
n ' 7.1⇥ 10�30 GeV .

We propose that this difference be explained by the exis-
tence of a dark decay channel for the neutron, which makes

Br(n ! p+ anything) ⇡ 99% .

There are two qualitatively different scenarios for the new
dark decay channel, depending on whether the final state con-
sists entirely of dark particles or contains visible ones:

(a) n ! invisible + visible ,

(b) n ! invisible .

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.
From an experimental point of view, channel (a) offers a de-
tection possibility, whereas channel (b) relies on higher order
radiative processes. We provide examples of both below.
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ply would not have formed. Although the neutron was discov-
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thereafter, its precise lifetime is still an open question [2, 3].
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described by the matrix element
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The theoretical estimate for the neutron lifetime is [4–7]
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|Vud|
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The Particle Data Group (PDG) world average for the axial-
vector to vector coupling ratio is � = �1.2723 ± 0.0023 [8].
Adopting the PDG average |Vud| = 0.97417± 0.00021 gives
⌧n between 875.3 s and 891.2 s within 3�.

There are two qualitatively different types of direct neutron
lifetime measurements: bottle and beam experiments.
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tainer for a time comparable to the neutron lifetime. The re-
maining neutrons that did not decay are counted and fit to a
decaying exponential, exp(�t/⌧n). The average from the five
bottle experiments included in the PDG [8] world average is
[9–13]

⌧bottlen = 879.6± 0.6 s .

Recent measurements using trapping techniques [14, 15] yield
a neutron lifetime within 2.0� of this average.

In the beam method, both the number of neutrons N in a
beam and the protons resulting from � decays are counted,
and the lifetime is obtained from the decay rate, dN/dt =
�N/⌧n. This yields a considerably longer neutron lifetime;
the average from the two beam experiments included in the
PDG average [16, 17] is

⌧beamn = 888.0± 2.0 s .

The discrepancy between the two results is 4.0�. This sug-
gests that either one of the measurement methods suffers from
an uncontrolled systematic error, or there is a theoretical rea-
son why the two methods give different results.

In this paper we focus on the latter possibility. We as-
sume that the discrepancy between the neutron lifetime mea-
surements arises from an incomplete theoretical description
of neutron decay and we investigate how the Standard Model
(SM) can be extended to account for the anomaly.

NEUTRON DARK DECAY

Since in beam experiments neutron decay is observed by
detecting decay protons, the lifetime they measure is related
to the actual neutron lifetime by

⌧beamn =
⌧n

Br(n ! p+ anything)
. (1)

In the SM the branching fraction (Br), dominated by � decay,
is 100% and the two lifetimes are the same. The neutron decay
rate obtained from bottle experiments is

�n ' 7.5⇥ 10�28 GeV.

The discrepancy �⌧n ' 8.4 s between the values measured in
bottle and beam experiments corresponds to [18]

��exp
n = �bottle

n � �beam
n ' 7.1⇥ 10�30 GeV .

We propose that this difference be explained by the exis-
tence of a dark decay channel for the neutron, which makes

Br(n ! p+ anything) ⇡ 99% .

There are two qualitatively different scenarios for the new
dark decay channel, depending on whether the final state con-
sists entirely of dark particles or contains visible ones:

(a) n ! invisible + visible ,

(b) n ! invisible .

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.
From an experimental point of view, channel (a) offers a de-
tection possibility, whereas channel (b) relies on higher order
radiative processes. We provide examples of both below.
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described by the matrix element
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The theoretical estimate for the neutron lifetime is [4–7]
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4908.7(1.9) s
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2(1 + 3�2)

.

The Particle Data Group (PDG) world average for the axial-
vector to vector coupling ratio is � = �1.2723 ± 0.0023 [8].
Adopting the PDG average |Vud| = 0.97417± 0.00021 gives
⌧n between 875.3 s and 891.2 s within 3�.

There are two qualitatively different types of direct neutron
lifetime measurements: bottle and beam experiments.

In the first method, ultracold neutrons are stored in a con-
tainer for a time comparable to the neutron lifetime. The re-
maining neutrons that did not decay are counted and fit to a
decaying exponential, exp(�t/⌧n). The average from the five
bottle experiments included in the PDG [8] world average is
[9–13]

⌧bottlen = 879.6± 0.6 s .

Recent measurements using trapping techniques [14, 15] yield
a neutron lifetime within 2.0� of this average.

In the beam method, both the number of neutrons N in a
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surements arises from an incomplete theoretical description
of neutron decay and we investigate how the Standard Model
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Since in beam experiments neutron decay is observed by
detecting decay protons, the lifetime they measure is related
to the actual neutron lifetime by
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In the SM the branching fraction (Br), dominated by � decay,
is 100% and the two lifetimes are the same. The neutron decay
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�n ' 7.5⇥ 10�28 GeV.

The discrepancy �⌧n ' 8.4 s between the values measured in
bottle and beam experiments corresponds to [18]

��exp
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n ' 7.1⇥ 10�30 GeV .

We propose that this difference be explained by the exis-
tence of a dark decay channel for the neutron, which makes

Br(n ! p+ anything) ⇡ 99% .

There are two qualitatively different scenarios for the new
dark decay channel, depending on whether the final state con-
sists entirely of dark particles or contains visible ones:

(a) n ! invisible + visible ,

(b) n ! invisible .

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.
From an experimental point of view, channel (a) offers a de-
tection possibility, whereas channel (b) relies on higher order
radiative processes. We provide examples of both below.
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The Particle Data Group (PDG) world average for the axial-
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Adopting the PDG average |Vud| = 0.97417± 0.00021 gives
⌧n between 875.3 s and 891.2 s within 3�.
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bottle experiments included in the PDG [8] world average is
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Recent measurements using trapping techniques [14, 15] yield
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Br(n ! p+ anything) ⇡ 99% .

There are two qualitatively different scenarios for the new
dark decay channel, depending on whether the final state con-
sists entirely of dark particles or contains visible ones:
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(b) n ! invisible .

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.
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Adopting the PDG average |Vud| = 0.97417± 0.00021 gives
⌧n between 875.3 s and 891.2 s within 3�.

There are two qualitatively different types of direct neutron
lifetime measurements: bottle and beam experiments.
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bottle experiments included in the PDG [8] world average is
[9–13]
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Recent measurements using trapping techniques [14, 15] yield
a neutron lifetime within 2.0� of this average.

In the beam method, both the number of neutrons N in a
beam and the protons resulting from � decays are counted,
and the lifetime is obtained from the decay rate, dN/dt =
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the average from the two beam experiments included in the
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gests that either one of the measurement methods suffers from
an uncontrolled systematic error, or there is a theoretical rea-
son why the two methods give different results.

In this paper we focus on the latter possibility. We as-
sume that the discrepancy between the neutron lifetime mea-
surements arises from an incomplete theoretical description
of neutron decay and we investigate how the Standard Model
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detecting decay protons, the lifetime they measure is related
to the actual neutron lifetime by
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�n ' 7.5⇥ 10�28 GeV.

The discrepancy �⌧n ' 8.4 s between the values measured in
bottle and beam experiments corresponds to [18]

��exp
n = �bottle
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n ' 7.1⇥ 10�30 GeV .

We propose that this difference be explained by the exis-
tence of a dark decay channel for the neutron, which makes

Br(n ! p+ anything) ⇡ 99% .

There are two qualitatively different scenarios for the new
dark decay channel, depending on whether the final state con-
sists entirely of dark particles or contains visible ones:

(a) n ! invisible + visible ,

(b) n ! invisible .

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.
From an experimental point of view, channel (a) offers a de-
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a neutron lifetime within 2.0� of this average.

In the beam method, both the number of neutrons N in a
beam and the protons resulting from � decays are counted,
and the lifetime is obtained from the decay rate, dN/dt =
�N/⌧n. This yields a considerably longer neutron lifetime;
the average from the two beam experiments included in the
PDG average [16, 17] is

⌧beamn = 888.0± 2.0 s .

The discrepancy between the two results is 4.0�. This sug-
gests that either one of the measurement methods suffers from
an uncontrolled systematic error, or there is a theoretical rea-
son why the two methods give different results.

In this paper we focus on the latter possibility. We as-
sume that the discrepancy between the neutron lifetime mea-
surements arises from an incomplete theoretical description
of neutron decay and we investigate how the Standard Model
(SM) can be extended to account for the anomaly.

NEUTRON DARK DECAY

Since in beam experiments neutron decay is observed by
detecting decay protons, the lifetime they measure is related
to the actual neutron lifetime by

⌧beamn =
⌧n

Br(n ! p+ anything)
. (1)

In the SM the branching fraction (Br), dominated by � decay,
is 100% and the two lifetimes are the same. The neutron decay
rate obtained from bottle experiments is

�n ' 7.5⇥ 10�28 GeV.

The discrepancy �⌧n ' 8.4 s between the values measured in
bottle and beam experiments corresponds to [18]

��exp
n = �bottle

n � �beam
n ' 7.1⇥ 10�30 GeV .

We propose that this difference be explained by the exis-
tence of a dark decay channel for the neutron, which makes

Br(n ! p+ anything) ⇡ 99% .

There are two qualitatively different scenarios for the new
dark decay channel, depending on whether the final state con-
sists entirely of dark particles or contains visible ones:

(a) n ! invisible + visible ,

(b) n ! invisible .

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.
From an experimental point of view, channel (a) offers a de-
tection possibility, whereas channel (b) relies on higher order
radiative processes. We provide examples of both below.
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There is a long-standing discrepancy between the neutron lifetime measured in beam and bottle experiments.
We propose to explain this anomaly by a dark decay channel for the neutron, involving one or more dark
sector particles in the final state. If any of these particles are stable, they can be the dark matter. We construct
representative particle physics models consistent with all experimental constraints.

INTRODUCTION
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M = 1p
2
GFVud gV [ p̄ �µn� � p̄ �5�µn ] [ ē �µ(1� �5)⌫ ] .
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⌧n =
4908.7(1.9) s

|Vud|
2(1 + 3�2)

.
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lifetime measurements: bottle and beam experiments.
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maining neutrons that did not decay are counted and fit to a
decaying exponential, exp(�t/⌧n). The average from the five
bottle experiments included in the PDG [8] world average is
[9–13]

⌧bottlen = 879.6± 0.6 s .

Recent measurements using trapping techniques [14, 15] yield
a neutron lifetime within 2.0� of this average.

In the beam method, both the number of neutrons N in a
beam and the protons resulting from � decays are counted,
and the lifetime is obtained from the decay rate, dN/dt =
�N/⌧n. This yields a considerably longer neutron lifetime;
the average from the two beam experiments included in the
PDG average [16, 17] is

⌧beamn = 888.0± 2.0 s .

The discrepancy between the two results is 4.0�. This sug-
gests that either one of the measurement methods suffers from
an uncontrolled systematic error, or there is a theoretical rea-
son why the two methods give different results.

In this paper we focus on the latter possibility. We as-
sume that the discrepancy between the neutron lifetime mea-
surements arises from an incomplete theoretical description
of neutron decay and we investigate how the Standard Model
(SM) can be extended to account for the anomaly.

NEUTRON DARK DECAY

Since in beam experiments neutron decay is observed by
detecting decay protons, the lifetime they measure is related
to the actual neutron lifetime by

⌧beamn =
⌧n

Br(n ! p+ anything)
. (1)

In the SM the branching fraction (Br), dominated by � decay,
is 100% and the two lifetimes are the same. The neutron decay
rate obtained from bottle experiments is

�n ' 7.5⇥ 10�28 GeV.

The discrepancy �⌧n ' 8.4 s between the values measured in
bottle and beam experiments corresponds to [18]

��exp
n = �bottle

n � �beam
n ' 7.1⇥ 10�30 GeV .

We propose that this difference be explained by the exis-
tence of a dark decay channel for the neutron, which makes

Br(n ! p+ anything) ⇡ 99% .

There are two qualitatively different scenarios for the new
dark decay channel, depending on whether the final state con-
sists entirely of dark particles or contains visible ones:

(a) n ! invisible + visible ,

(b) n ! invisible .

Here the label “invisible” includes dark sector particles, as
well as neutrinos. Such decays are described by an effective
operator O = Xn, where n is the neutron and X is a spin
1/2 operator, possibly composite, e.g. X = �1�2...�k, with
the �’s being fermions and bosons combining into spin 1/2.
From an experimental point of view, channel (a) offers a de-
tection possibility, whereas channel (b) relies on higher order
radiative processes. We provide examples of both below.
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New Physics Interpretations
New Physics scenarios :

2

Proton decay constraints
The operator O generally gives rise to proton decay via

p ! n⇤ + e+ + ⌫e ,

followed by the decay of n⇤ through the channel (a) or (b)
and has to be suppressed [19]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of neutron decay, say Mf , is larger than
mp � me. On the other hand, for the neutron to decay, Mf

must be smaller than the neutron mass, therefore it is required
that

mp �me < Mf < mn .

Nuclear physics bounds
In general, the decay channels (a) and (b) could trigger nu-
clear transitions from (Z,A) to (Z,A�1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1) . Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf < mn .

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (2)

The condition in Eq. (2) circumvents all nuclear decay limits
listed in PDG [8], including the most severe ones [20–22].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (2) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (3)

Provided there are no other decay channels for �, Eq. (3) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (2). Both � and � can be DM
candidates, provided

|m� �m�| < mp +me .

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [23, 24].

MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are:

n ! �� , n ! �� , n ! � e+e� ,

as well as those involving additional dark particle(s) and/or
photon(s).

Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (2)
and (3) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (4)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [25–27]
measured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an interaction �n, and an interaction
�n � mediated by a mixing between the neutron and �. An
example of such a theory is given by the effective Lagrangian

L
e↵
1 = n̄

�
i/@ �mn + gne

2mn
�µ⌫Fµ⌫

�
n

+ �̄
�
i/@ �m�

�
�+ " (n̄�+ �̄n) , (5)

where gn'�3.826 is the neutron g-factor and " is the mixing
parameter with dimension of mass. The term corresponding
to n ! �� is obtained by transforming Eq. (5) to the mass
eigenstate basis and, for " ⌧ mn �m�, yields

L
e↵
n!�� =

gne

2mn

"

(mn �m�)
�̄ �µ⌫Fµ⌫ n . (6)

Therefore, the neutron dark decay rate is

��n!�� =
g2ne

2

8⇡

✓
1�

m2
�

m2
n

◆3 mn "2

(mn �m�)2

⇡ ��exp
n

�
1+x
2

�3⇣ 1�x
1.8⇥10�3

⌘⇣
" [GeV]

9.3⇥10�14

⌘2
, (7)
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FIG. 1. Dark decay of the neutron in model 1.

PARTICLE PHYSICS MODELS

We now present two microscopic renormalizable models
that are representative of the cases n ! �� and n ! ��.

Model 1

The minimal model for the neutron dark decay requires
only two particles beyond the SM: a scalar � = (3, 1)�1/3

(color triplet, weak singlet, hypercharge �1/3), and a Dirac
fermion � (SM singlet, which can be the DM). This model is a
realization of the case n ! ��. The neutron dark decay pro-
ceeds through the process shown in Fig. 1. The Lagrangian of
the model is

L1 =
�
�q ✏

ijk uc
Li dRj�k + ���

⇤i�̄ dRi + �l Qc
Ri lL�

⇤i

+�Q ✏ijk Qc
RiQLj�k + h.c.

�
�M2

�|�|
2
�m� �̄ � , (14)

where uc
L is the complex conjugate of uR. We assign baryon

numbers B� = 1, B� = �2/3 and, to forbid proton decay
[28–30], assume baryon number conservation, i.e. set �l = 0
[31]. For simplicity, we choose �Q = 0. The rate for n!��
is given by Eq. (7) with

" =
� �q��

M2
�

and � defined by

h0|✏ijk
�
uc
LidRj

�
d⇢Rk|ni = �

� 1+�5

2

�⇢
�
u� .

Here u is the neutron spinor, � is the spinor index and the
parenthesis denote spinor contraction. Lattice QCD calcu-
lations give � = 0.0144(3)(21) GeV3 [32], where the er-
rors are statistical and systematic, respectively. Assuming
m� = 937.9 MeV to maximize the rate, the parameter choice
explaining the anomaly is

|�q��|

M2
�

⇡ 6.7⇥ 10�6 TeV�2 . (15)

In addition to the monochromatic photon with energy E� <
1.664 MeV and the e+e� signal, one may search directly also
for �. It can be singly produced through p p ! � or pair
produced via gluon fusion g g ! ��. This results in a dijet
or four-jet signal from � ! dcuc, as well as a monojet plus
missing energy signal from � ! d�. Given Eq. (15), � is not
excluded by recent LHC analyses [33–38] provided M� &
1 TeV [39].

FIG. 2. Dark decay of the neutron in model 2.

If � is a DM particle, without an efficient annihilation chan-
nel one has to invoke non-thermal DM production to explain
its current abundance. This can be realized via a late decay of
a new heavy scalar, as shown in [40] for a similar model. Cur-
rent DM direct detection experiments provide no constraints
[41].

The parameter choice in Eq. (15) is excluded if � is a
Majorana particle, as in the model proposed in [42], by
the neutron-antineutron oscillation and dinucleon decay con-
straints [23, 24]. Neutron decays considered in [43] are too
suppressed to account for the neutron decay anomaly.

Model 2

A representative model for the case n ! �� involves four
new particles: the scalar � = (3, 1)�1/3, two Dirac fermions
�̃, �, and a complex scalar �, the last three being SM singlets.
The neutron dark decay in this model is shown in Fig. 2. The
Lagrangian is

L2 = L1(� ! �̃) + (��
¯̃���+ h.c.)�m2

�|�|
2
�m� �̄ � .

(16)

Assigning B�̃ = B� = 1 and B� = 0, baryon number is con-
served. We have also imposed an additional U(1) symmetry
under which � and � have opposite charges. For m� > m�

the annihilation channel � �̄ ! � �̄ via a t-channel �̃ ex-
change is open. The observed DM relic density, assuming
m� = 937.9 MeV and m� ⇡ 0, is obtained for �� ' 0.037.
Alternatively, the DM can be non-thermally produced.

The rate for n ! �� is described by Eq. (12) with " =
� �q��/M2

�. For m�̃=m�, the anomaly is explained with

|�q��|

M2
�

|��|

0.04
⇡ 4.9⇥ 10�7 TeV�2.

For �� ⇡ 0.04 this is consistent with LHC searches, pro-
vided again that M� & 1 TeV. Direct DM detection searches
present no constraints. For similar reasons as before, � and �̃
cannot be Majorana particles.

As discussed above, in this model the branching fractions
for the visible (including a photon) and invisible final states
can be comparable, and their relative size is described by
Eq. (13). A final state containing an e+e� pair is also pos-
sible. The same LHC signatures are expected as in model 1.
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where uc
L is the complex conjugate of uR. We assign baryon

numbers B� = 1, B� = �2/3 and, to forbid proton decay
[28–30], assume baryon number conservation, i.e. set �l = 0
[31]. For simplicity, we choose �Q = 0. The rate for n!��
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Here u is the neutron spinor, � is the spinor index and the
parenthesis denote spinor contraction. Lattice QCD calcu-
lations give � = 0.0144(3)(21) GeV3 [32], where the er-
rors are statistical and systematic, respectively. Assuming
m� = 937.9 MeV to maximize the rate, the parameter choice
explaining the anomaly is
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In addition to the monochromatic photon with energy E� <
1.664 MeV and the e+e� signal, one may search directly also
for �. It can be singly produced through p p ! � or pair
produced via gluon fusion g g ! ��. This results in a dijet
or four-jet signal from � ! dcuc, as well as a monojet plus
missing energy signal from � ! d�. Given Eq. (15), � is not
excluded by recent LHC analyses [33–38] provided M� &
1 TeV [39].
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If � is a DM particle, without an efficient annihilation chan-
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[41].

The parameter choice in Eq. (15) is excluded if � is a
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Assigning B�̃ = B� = 1 and B� = 0, baryon number is con-
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under which � and � have opposite charges. For m� > m�

the annihilation channel � �̄ ! � �̄ via a t-channel �̃ ex-
change is open. The observed DM relic density, assuming
m� = 937.9 MeV and m� ⇡ 0, is obtained for �� ' 0.037.
Alternatively, the DM can be non-thermally produced.

The rate for n ! �� is described by Eq. (12) with " =
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for the visible (including a photon) and invisible final states
can be comparable, and their relative size is described by
Eq. (13). A final state containing an e+e� pair is also pos-
sible. The same LHC signatures are expected as in model 1.
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can be comparable, and their relative size is described by
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DM quantum numbers DM interactions
B L spin dimension with quarks with hadrons
1 0 1/2 6 �udd �n

1/3 0 1/2 9 ���udd ���n

2/3 0 0 9 �
3(udd)2 �

3
n
2

2 0 0 7 �(udd)2 �nn

0 1 1/2 4, 6 �LH,�`ff̄ �`⇡,�`pn̄

0 2 0 6, 8 �(LH)2,�``Xqq̄ �⌫⌫,�``⇡⇡

1 1 0 7 �LQQQ,�`uud �n⌫,�p`

1 �1 0 8 �¯̀Xqqq �n⌫̄,��� ¯̀,�n⇡� ¯̀

1 2 1/2 9 �`⌫qqq �n⌫⌫,�p`⌫

Table 1: Possible models of a new DM particle that carries baryon and lepton number B,L. The

left columns lists possible B,L assignments, and the consequent minimal DM spin (a scalar � or a

fermion �). The right columns show representative examples of lowest-dimension e↵ective operators

that couple DM to the SM conserving B and L: here f denotes a generic SM fermion, either a generic

quark q, or a charged lepton ` or a neutrino ⌫. X denotes a derivative or a Higgs doublet H (both

have dimension 1). L is the SM lepton doublet that contains a neutrino, so that LH contains ⌫v.

repulsion worsen the neutron star problem. Models where a fermion � carries both lepton and
baryon number do not avoid the neutron star problem, as neutrinos freely escape from neutron
stars. Independently of the specific particle-physics interactions, the � chemical potential µ�

in thermal equilibrium in a neutron star is fixed in terms of the chemical potential of conserved
charges (baryon number and vanishing electric charge) as

µ� = B�µn. (2)

Eq. (2) shows that all models a↵ect neutron stars in a qualitatively similar way. Eq. (2) also
shows how important quantitative di↵erences can arise: reducing µ� allows to substantially
reduce the impact on neutron stars. This is achieved noticing that a more minimal choice of
quantum numbers exists, given that baryon number can be fractional, like the electric charge.
In the more minimal model � carries baryon number B� = 1/3 and L� = 0 (second row of
table 1). So neutrons decay as n ! ��� if the new particle is light enough, M < mn/3.
This neutron decay can have a small enough impact on neutron stars for the same reason
why ordinary neutron decay n ! pe⌫̄e has a small impact: the neutron decays to particles
light enough that their Fermi repulsion is big enough, without the need of introducing extra
repulsive interactions.

We thereby focus on this model. The DM mass M is strongly restricted as illustrated in
fig. 1, where we plot the following key kinematical thresholds:

• One needs M < mn/3 ⇡ 313.19MeV so that n ! ��� is kinematically open.

• One needs M > (mn � EBe)/3 ⇡ 312.63MeV so that nuclear decays into ��� are kine-
matically closed, where EBe = 1.664MeV since the strongest bound comes from 8Be [12].
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound m� = 937.9 MeV. A particle physics
realization of this case is provided by model 1 below.

The testable prediction of this class of models is a
monochromatic photon with an energy in the range specified
by Eq. (4) and a branching fraction

��n!��

�n
⇡ 1% .

A signature involving an e+e� pair with total energy
Ee+e� < 1.665 MeV is also expected, but with a suppressed
branching fraction of at most 1.1⇥ 10�6.

If � is not a DM particle, the bound in Eq. (3) no longer
applies and the final state monochromatic photon can have an
energy in a wider range:

0 < E� < 1.664 MeV , (8)

entirely escaping detection as E� ! 0.

Neutron ! two dark particles

Denoting the final state dark fermion and scalar by � and
�, respectively, and an intermediate dark fermion by �̃, con-
sider a scenario with both a two- and three-particle interaction,
�̃n , �n�. The requirement in Eq. (2) takes the form

937.900 MeV < m� +m� < 939.565 MeV , (9)

and both �, � are stable if

|m� �m�| < 938.783 MeV .

Also, m�̃ > 937.900 MeV.
If m�̃ > mn, the only neutron dark decay channels are

n ! �� and n ! �̃⇤
! p + e�+ ⌫̄e, with branching frac-

tions governed by the strength of the �n� interaction. Even if
this coupling is zero, the lifetime of �̃ is long enough for the
anomaly to be explained. In the case 937.9 MeV < m�̃ <
mn, the particle �̃ can be produced on-shell and there are
three neutron dark decay channels: n ! �̃ �, n ! �� and
n ! �̃⇤

! p + e�+ ⌫̄e (when m�̃ > 938.783 MeV), with
branching fractions depending on the strength of the �n�
coupling. The rate for the decay n ! �̃⇤

! p + e�+ ⌫̄e
is negligible compared to that for n ! �̃ �. In the limit of a
vanishing �n� coupling this case reduces to n ! �̃ �.

An example of such a theory is

L
e↵
2 = L

e↵
1 (� ! �̃) + (��

¯̃���+ h.c.)

+ �̄
�
i/@ �m�

�
�+ @µ�

⇤@µ��m2
�|�|

2 . (10)

The term corresponding to n ! �� is

L
e↵
n!�� =

�� "

mn �m�̃
�̄n�⇤ . (11)

This yields the neutron dark decay rate

��n!�� =
|��|

2

16⇡

p
f(x, y)

mn "2

(mn �m�̃)2
, (12)

where

f(x, y) = [(1� x)2 � y2] [(1 + x)2 � y2]3

with x = m�/mn and y = m�/mn. A particle physics real-
ization of this scenario is provided by model 2 below.

For m�̃ > mn the missing energy signature has a branching
fraction ⇡ 1%. There will also be a very suppressed radiative
process involving a photon in the final state with a branching
fraction 3.5⇥ 10�10 or smaller.

As discussed earlier, in the case 937.9 MeV < m�̃ < mn

both the visible and invisible neutron dark decay channels are
present. The ratio of their branching fractions is

��n!�̃�

��n!��
=

2g2ne
2

|��|
2

(1� x̃2)3p
f(x, y)

, (13)

where x̃ = m�̃/mn, while their sum accounts for the neutron
decay anomaly, i.e.

��n!�̃� +��n!��

�n
⇡ 1% .

The branching fraction for the process involving a photon
in the final state ranges from ⇠ 0 to 1%, depending on the
masses and couplings. A suppressed decay channel involving
e+e� is also present.

Neutron ! dark matter + e+e�

This case is realized when the four-particle effective inter-
action involving the neutron, DM and an e+e� pair is present
and Br(n ! � e+e�) ⇡ 1%. The requirement on the DM
mass from Eq. (2) is

937.900 MeV < m� < 938.543 MeV

and the allowed energy range of the e+e� pair is

2me  Ee+e� < 1.665 MeV .

Assuming the effective term for n ! � e+e� of the form

L
e↵
n!�e+e� =  �̄n ē e

and a suppressed two-particle interaction �n, the neutron
dark decay rate is

��n =
2m5

n

128⇡3

Z (1�x)2

4z2

d⇠
p
⇠

�
⇠ � 4z2

� 3
2
⇥
(1 + x)2 � ⇠

⇤

⇥

p
(1� x2 � ⇠)2 � 4 ⇠ x2 ,

where x = m�/mn and z = me/mn. It is maximized
for m� = 937.9 MeV, in which case it requires 1/

p
 ⇡

670 GeV to explain the anomaly. We will not analyze fur-
ther this possibility, but we note that a theory described by the
Lagrangian (10) with � coupled to an e+e� pair could be an
example.
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fraction in equilibrium. Repulsive DM-baryon interactions
can also stabilize the star, not by sti↵ening the EoS, but by
making it energetically expensive to produce DM particles
in a pure baryon medium (and vice versa). Therefore the
cross interactions can impede the creation of any significant
amount of DM inside the NS, thus maintaining NSs almost
pure (without DM present) despite the fact that free neu-
trons could decay to DM.

Before we present a specific example of a microscopic
model that can give all this, it is instructive to show how DM-
neutron interactions a↵ect the stability of NSs. We model
the interaction by a vector or scalar boson mediated Yukawa
potential

U = ±g�gn

4⇡

e
�m�r

r
, (1)

where + (�) is for vector (scalar) exchange, g�,n are the
couplings to DM and neutron respectively and m� is the
mass of the mediator. Couplings with equal (opposite) sign
result in repulsion (attraction) for vectors and vice versa for
scalars. DM self-interactions have a similar potential with
coupling g

2
� in place of g�gn. None of the models proposed

to date that explain the neutron decay anomaly lead to a
repulsive cross interaction, with the exception of Model 1
of [5] that has a photon in the final state. However it couples
to the neutron via a magnetic dipole interaction, which can
be attractive or repulsive depending on its orientation. We
expect that neutrons will occupy equally spin up and down
states, and therefore such interactions will average to zero,
hence not suitable in our case.

Equation of state: The energy density in a NS with
DM and the above interaction is

"(nn, n�) = "nuc(nn) + "�(n�) +
n�nn

2z2
, (2)

where nn,� are the neutron and DM number densities re-
spectively, "nuc is the energy density due to nuclear inter-
actions, "� is the energy density of DM and the last term
is the Yukawa energy density due to n-� interactions in the
mean field approximation where z ⌘ m�/

p
|g�gn|. The last

term in the energy density is valid as long as the star is large
compared to the Yukawa screening length, i.e. R � 1/m�.
Notice that the cross interaction depends simply on one pa-
rameter z. Long range forces are severely constrained and
therefore we are going to assume that the mediator has a
mass. The DM energy density including DM self-interactions
is

"� =
m

4
�

8⇡2

h
x

p
1 + x2

�
1 + 2x2

�
� log

⇣
x+

p
1 + x2

⌘i
±

n
2
�

2z02
,

x =

�
3⇡2

n�

�1/3

m�
, (3)

where z
0 ⌘ m�/g� and it is understood that the last term

corresponds to DM self-interactions with + (�) sign being re-
pulsive (attractive). The free energy cost at zero temperature
associated to creating a DM particle at fixed total number

density nF = nn + n� is just the change in internal energy,
i.e.

�E ⌘ @"(nF � n�, n�)

@n�
= µ�(n�)� µnuc(nn) +

nF � 2n�

2z2
,

(4)
where µi (i = �, nuc) represent the chemical potentials of
DM and neutrons respectively. A chemical equilibrium exists
when �E = 0. In a pure neutron environment where no DM
is present the energy cost is

�E0 = �E|n�=0 = m� � µnuc(nF) +
nF

2z2
. (5)

Notice, that the nuclear chemical potential µnuc > mn and
mn > m� for the dark decay to take place. Therefore in the
absence of DM self-interactions, weak DM-neutron interac-
tions (large z) makes neutron conversion thermodynamically
favored [6–8], whereas stronger DM-neutron cross interac-
tions (small z) lead to a large energy cost for converting
neutrons to DM that makes it energetically favored to have
zero DM density. For the nuclear EoS, we have chosen the
SLy-4 [25] which is a nuclear EoS without a quark core and
the power law EoS V3⇡ + VR [26] (which was also used in
Ref. [9]). Both EoS we are using can in isolation support
NSs with a mass larger than 2M�, hence are consistent with
observational data. As depicted in Fig. 1, for a given strength
of DM-neutron cross interaction (i.e., for a given z), there are
three possibilities: i) �E0 > 0 i.e., the system is in a pure
neutron phase simply because there is an energy cost to cre-
ate DM. As can be seen by inspection of Eq.(5), by strength-
ening cross interactions (i.e., by reducing z), the system can
always enter the �E0 > 0 regime. This is also shown graph-
ically in Fig. 1, where for a given total density nF, there is
always a z below which �E0 > 0 and no DM particles are
present. ii) �E0 < 0 and �E = 0 for some value of n� < nF.
In this case �E0 < 0 means that it is energetically favored to
convert some of the neutrons to DM. The condition �E = 0
insures chemical equilibrium and by enforcing this condition
using Eq. (4), one can determine the amount of DM present
(i.e., n�). iii) The last regime satisfies �E < 0 for any n�,
which means that e↵ectively all neutrons have converted to
DM particles. We measure number densities in units of the
nuclear density n0 = 0.16 fm�3. We will mainly focus on
DM-baryon cross interaction as the mechanism allowing NSs
to reach 2M�. However, we will also comment on the case
where DM self-interactions provide the needed support for
heavy NSs.
In order to estimate how heavy NSs can be, we use Eq. (2)

with our two choices of nuclear EoS [25, 26]. The pres-
sure is derived from the relation P = n

2
Fd("/nF)/dnF. In

the limit of zero temperature (an excellent approximation
for NSs), knowing the pressure and the energy density as
a function of n�, nnuc and the parameter z, allows us to
solve the relativistic hydrostatic equilibrium described by
the Tolmann-Oppenheimer-Volko↵ equation. By scanning
the central fermion density, we find the maximum mass for
the NS. Recall that n� is uniquely fixed from the chemical

TOV equation for hydrostatic equilibrium with DM and  Neutrons
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FIG. 1. The phase diagram using Eq. 4 and the SLy-4 EoS [25]
assuming mn � m� = 1 MeV. In the white region there is an
energy cost associated to creating any DM particles and pure
neutron matter is preferred. In the light blue region, a chemi-
cal equilibrium exists with both neutron matter and DM. In the
dark blue region, pure DM is thermodynamically preferred. For
z . 71 MeV, fermion densities < 6n0 favor neutron matter and
therefore do not a↵ect NSs with mass smaller than 2M�.

equilibrium condition �E = 0 of Eq. (4). If �E0 > 0, we ob-
viously have n� = 0. Therefore NSs can be as heavy as 2M�
based on the fact that no DM is present to soften the EoS
(corresponding to a central density of 6n0 using the SLy-4
EoS shown in Fig. 1). For our choices of EoS this corre-
sponds to z . 71 MeV. No stable equilibrium exists if the
central density is in the pure DM phase, and the heaviest
stable configuration in the mixed phase is around 1.5M�.

A microscopic model: We move on to suggest a con-
crete model satisfying the two basic assumptions i.e., to pro-
vide the mechanism for the neutron decay to DM and provide
repulsive cross interactions with z . 71 MeV. The potential
in Eq. (1) can arise from scalar or vector exchange. In the
former case the repulsive force requires opposite sign charges
of � and n, while in the latter same sign charges are required.
In this example, we choose a scalar mediator, and realize the
model as a modification of model 2 of Ref. [5]. It requires
four particles beyond the SM: a scalar � = (3, 1)�1/3 (color
triplet, weak singlet, hypercharge �1/3), two Dirac fermions
�̃ and � (the DM particle), and a scalar � (all SM singlets).
The neutron decay to � + � is mediated by the very heavy
� and the fermion �̃ with a mass that may be heavier than
the neutron, through interactions given by

L =�q ✏
ijk

u
c
Li dRj�k + ���

⇤i ¯̃� dRi + ��
¯̃���

+ µH
†
H�+ g��̄� �+ h.c., (6)

where dR and uR are the standard model singlet quarks of
charge �1/3 and 2/3. The dark neutron decay takes place
with interactions in the first line of the Lagrangian. The
baryon numbers for the particles �, �̃, � and � are chosen to
be �2/3, 1, 1 and 0, respectively. Compared to model 2 in
Ref. [5] the baryon numbers of � and � are exchanged which
allows additional terms in the Lagrangian, in particular a

Higgs portal and a vertex with � and �. The interaction
through the Higgs portal induces an e↵ective interaction with
the neutron gnn̄n� where

gn =
µ�⇡n

m
2
h

, (7)

with mh = 125 GeV being the Higgs mass and �⇡n =P
qhn|mq q̄q|ni ⇡ 370 MeV [27], where the sum runs over

all quark flavors. The model can incorporate the neutron de-
cay to DM and DM relic density just as described in [5]. The
repulsive DM-neutron interactions require gng� < 0. To get
the right interaction strength z . 71 MeV, we must consider
constraints on the light mediator �. First we consider con-
straints on the DM self-interaction coupling g�, which allows
a DM scattering cross section per mass �/m . 1�10 cm2

/g,
with the relevant momentum transfer weighted cross section
given by [28]

�T =
4⇡

m
2
�

�
2 log

�
1 + �

�1
�
, (8)

with � = 2↵m�/(m�v
2) and v ⇠ 30 km/sec for typical

dwarf galaxies (the expression being valid for � < 0.1 and
m�v/m� � 1). Taking the DM mass to be ⇠ mn, we get
g� . 4⇥10�4 with a mild dependence on the mediator mass
m�. For a g� value slightly smaller than 4 ⇥ 10�4, the DM
self-interactions fall in the range that alleviate the problems
of CCDM. At the same time, the constraints on light parti-
cles coupling to the neutron allow us to find parameter space
satisfying our NS stability condition. We can for example
choose m� ⇠ 0.1 eV and gn ⇠ �10�14, corresponding to
µ ⇠ �0.4 eV. Such a value of gn is allowed by the strict
constraints set on arguments of rapid red giant star cooling,
(see e.g., Fig. 3 in Ref. [29]). These values correspond to
z ⇠ 50 MeV, which is below the value 71 MeV that we found
su�cient to stabilize heavy neutron stars. We should stress
here that close to the surface of the NS where nF ! 0, one
cannot exclude the presence of DM, simply because at low
densities µn ' mn while µ� ' m�. Since mn > m�, close to
the surface there could be neutrons converting to DM. This
can be seen at low densities in our Fig. 1. However, this does
not change our conclusions. Firstly a small amount of DM at
low densities close to the surface does not change the overall
stability of the star which depends on the EoS at the center.
Secondly, at the NS crust there are heavy nuclei and the EoS
we have been using are not accurate.

The light mediator � could potentially create problems
during BBN and CMB since it could contribute to the e↵ec-
tive number of relativistic degrees of freedom. To be on the
safe side, we require that � decays before the start of BBN
(i.e., when the Universe was 1 sec old) and before the neu-
trino decoupling era (which is roughly the same as the start
of BBN), in order not to disturb the abundances of light ele-
ments. This can be achieved by decaying to active or sterile
neutrinos as e.g. in [30]. In the case of sterile neutrinos,
the decay can take place via a term yN�N

c
N where N is a

light sterile neutrino. The requirement that � decays before

In principle can cause problems by adding to Nef  : Ideally should decay before start of BBN to  avoid all constraints
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Proton decay constraints
The operator O generally gives rise to proton decay via

p ! n⇤ + e+ + ⌫e ,

followed by the decay of n⇤ through the channel (a) or (b)
and has to be suppressed [19]. Proton decay can be elimi-
nated from the theory if the sum of masses of particles in the
minimal final state f of neutron decay, say Mf , is larger than
mp � me. On the other hand, for the neutron to decay, Mf

must be smaller than the neutron mass, therefore it is required
that

mp �me < Mf < mn .

Nuclear physics bounds
In general, the decay channels (a) and (b) could trigger nu-
clear transitions from (Z,A) to (Z,A�1). If such a transition
is accompanied by a prompt emission of a state f 0 with the
sum of masses of particles making up f 0 equal to Mf 0 , it can
be eliminated from the theory by imposing Mf 0 > �M =
M(Z,A) � M(Z,A � 1) . Of course Mf 0 need not be the
same as Mf , since the final state f 0 in nuclear decay may
not be available in neutron decay. For example, Mf 0 < Mf

when the state f 0 consists of a single particle, which is not
an allowed final state of the neutron decay. If f 0 = f then f 0

must contain at least two particles. The requirement becomes,
therefore,

�M < min
�
Mf 0

 
 Mf < mn .

The most stringent of such nuclear decay constraints comes
from the requirement of 9Be stability, for which �M =
937.900 MeV, thus

937.900 MeV < min
�
Mf 0

 
 Mf < 939.565 MeV . (2)

The condition in Eq. (2) circumvents all nuclear decay limits
listed in PDG [8], including the most severe ones [20–22].

Dark matter
Consider f to be a two-particle final state containing a dark
sector spin 1/2 particle �. Assuming the presence of the in-
teraction �n, the condition in Eq. (2) implies that the other
particle in f has to be a photon or a dark sector particle � with
mass m� < 1.665 MeV (we take it to be spinless). The decay
� ! p+ e�+ ⌫̄e is forbidden if

m� < mp +me = 938.783 MeV . (3)

Provided there are no other decay channels for �, Eq. (3) en-
sures that � is stable, thus making it a DM candidate. On the
other hand, if � ! p+ e�+ ⌫̄e is allowed, although this pre-
vents � from being the DM, its lifetime is still long enough to
explain the neutron decay anomaly. In both scenarios � can
be a DM particle as well.

Without the interaction �n, only the sum of final state
masses is constrained by Eq. (2). Both � and � can be DM
candidates, provided

|m� �m�| < mp +me .

One can also have a scalar DM particle � with mass m� <
938.783 MeV and � being a Dirac right-handed neutrino.
Trivial model-building variations are implicit. The scenarios
with a Majorana fermion � or a real scalar � are additionally
constrained by neutron-antineutron oscillation and dinucleon
decay searches [23, 24].

MODEL-INDEPENDENT ANALYSIS

Based on the discussed experimental constraints, the avail-
able channels for the neutron dark decay are:

n ! �� , n ! �� , n ! � e+e� ,

as well as those involving additional dark particle(s) and/or
photon(s).

Neutron ! dark matter + photon

This decay is realized in the case of a two-particle interac-
tion involving the fermion DM � and a three-particle interac-
tion including � and a photon, i.e., �n , �n �. Equations (2)
and (3) imply that the DM mass is

937.900 MeV < m� < 938.783 MeV

and the final state photon energy

0.782 MeV < E� < 1.664 MeV . (4)

We are not aware of any experimental constraints on such
monochromatic photons. The search described in [25–27]
measured photons from radiative � decays in a neutron beam,
however, photons were recorded only if they appeared in co-
incidence with a proton and an electron, which is not the case
in our proposal.

To describe the decay n ! �� in a quantitative way, we
consider theories with an interaction �n, and an interaction
�n � mediated by a mixing between the neutron and �. An
example of such a theory is given by the effective Lagrangian

L
e↵
1 = n̄

�
i/@ �mn + gne

2mn
�µ⌫Fµ⌫

�
n

+ �̄
�
i/@ �m�

�
�+ " (n̄�+ �̄n) , (5)

where gn'�3.826 is the neutron g-factor and " is the mixing
parameter with dimension of mass. The term corresponding
to n ! �� is obtained by transforming Eq. (5) to the mass
eigenstate basis and, for " ⌧ mn �m�, yields

L
e↵
n!�� =

gne

2mn

"

(mn �m�)
�̄ �µ⌫Fµ⌫ n . (6)

Therefore, the neutron dark decay rate is

��n!�� =
g2ne

2

8⇡

✓
1�

m2
�

m2
n

◆3 mn "2

(mn �m�)2

⇡ ��exp
n

�
1+x
2

�3⇣ 1�x
1.8⇥10�3

⌘⇣
" [GeV]

9.3⇥10�14

⌘2
, (7)
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound m� = 937.9 MeV. A particle physics
realization of this case is provided by model 1 below.

The testable prediction of this class of models is a
monochromatic photon with an energy in the range specified
by Eq. (4) and a branching fraction

��n!��

�n
⇡ 1% .

A signature involving an e+e� pair with total energy
Ee+e� < 1.665 MeV is also expected, but with a suppressed
branching fraction of at most 1.1⇥ 10�6.

If � is not a DM particle, the bound in Eq. (3) no longer
applies and the final state monochromatic photon can have an
energy in a wider range:

0 < E� < 1.664 MeV , (8)

entirely escaping detection as E� ! 0.

Neutron ! two dark particles

Denoting the final state dark fermion and scalar by � and
�, respectively, and an intermediate dark fermion by �̃, con-
sider a scenario with both a two- and three-particle interaction,
�̃n , �n�. The requirement in Eq. (2) takes the form

937.900 MeV < m� +m� < 939.565 MeV , (9)

and both �, � are stable if

|m� �m�| < 938.783 MeV .

Also, m�̃ > 937.900 MeV.
If m�̃ > mn, the only neutron dark decay channels are

n ! �� and n ! �̃⇤
! p + e�+ ⌫̄e, with branching frac-

tions governed by the strength of the �n� interaction. Even if
this coupling is zero, the lifetime of �̃ is long enough for the
anomaly to be explained. In the case 937.9 MeV < m�̃ <
mn, the particle �̃ can be produced on-shell and there are
three neutron dark decay channels: n ! �̃ �, n ! �� and
n ! �̃⇤

! p + e�+ ⌫̄e (when m�̃ > 938.783 MeV), with
branching fractions depending on the strength of the �n�
coupling. The rate for the decay n ! �̃⇤

! p + e�+ ⌫̄e
is negligible compared to that for n ! �̃ �. In the limit of a
vanishing �n� coupling this case reduces to n ! �̃ �.

An example of such a theory is

L
e↵
2 = L

e↵
1 (� ! �̃) + (��

¯̃���+ h.c.)

+ �̄
�
i/@ �m�

�
�+ @µ�

⇤@µ��m2
�|�|

2 . (10)

The term corresponding to n ! �� is

L
e↵
n!�� =

�� "

mn �m�̃
�̄n�⇤ . (11)

This yields the neutron dark decay rate

��n!�� =
|��|

2

16⇡

p
f(x, y)

mn "2

(mn �m�̃)2
, (12)

where

f(x, y) = [(1� x)2 � y2] [(1 + x)2 � y2]3

with x = m�/mn and y = m�/mn. A particle physics real-
ization of this scenario is provided by model 2 below.

For m�̃ > mn the missing energy signature has a branching
fraction ⇡ 1%. There will also be a very suppressed radiative
process involving a photon in the final state with a branching
fraction 3.5⇥ 10�10 or smaller.

As discussed earlier, in the case 937.9 MeV < m�̃ < mn

both the visible and invisible neutron dark decay channels are
present. The ratio of their branching fractions is

��n!�̃�

��n!��
=

2g2ne
2

|��|
2

(1� x̃2)3p
f(x, y)

, (13)

where x̃ = m�̃/mn, while their sum accounts for the neutron
decay anomaly, i.e.

��n!�̃� +��n!��

�n
⇡ 1% .

The branching fraction for the process involving a photon
in the final state ranges from ⇠ 0 to 1%, depending on the
masses and couplings. A suppressed decay channel involving
e+e� is also present.

Neutron ! dark matter + e+e�

This case is realized when the four-particle effective inter-
action involving the neutron, DM and an e+e� pair is present
and Br(n ! � e+e�) ⇡ 1%. The requirement on the DM
mass from Eq. (2) is

937.900 MeV < m� < 938.543 MeV

and the allowed energy range of the e+e� pair is

2me  Ee+e� < 1.665 MeV .

Assuming the effective term for n ! � e+e� of the form

L
e↵
n!�e+e� =  �̄n ē e

and a suppressed two-particle interaction �n, the neutron
dark decay rate is

��n =
2m5

n

128⇡3

Z (1�x)2

4z2

d⇠
p
⇠

�
⇠ � 4z2

� 3
2
⇥
(1 + x)2 � ⇠

⇤

⇥

p
(1� x2 � ⇠)2 � 4 ⇠ x2 ,

where x = m�/mn and z = me/mn. It is maximized
for m� = 937.9 MeV, in which case it requires 1/

p
 ⇡

670 GeV to explain the anomaly. We will not analyze fur-
ther this possibility, but we note that a theory described by the
Lagrangian (10) with � coupled to an e+e� pair could be an
example.
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where x = m�/mn. The rate is maximized when m� satu-
rates the lower bound m� = 937.9 MeV. A particle physics
realization of this case is provided by model 1 below.

The testable prediction of this class of models is a
monochromatic photon with an energy in the range specified
by Eq. (4) and a branching fraction

��n!��

�n
⇡ 1% .

A signature involving an e+e� pair with total energy
Ee+e� < 1.665 MeV is also expected, but with a suppressed
branching fraction of at most 1.1⇥ 10�6.

If � is not a DM particle, the bound in Eq. (3) no longer
applies and the final state monochromatic photon can have an
energy in a wider range:

0 < E� < 1.664 MeV , (8)

entirely escaping detection as E� ! 0.

Neutron ! two dark particles

Denoting the final state dark fermion and scalar by � and
�, respectively, and an intermediate dark fermion by �̃, con-
sider a scenario with both a two- and three-particle interaction,
�̃n , �n�. The requirement in Eq. (2) takes the form

937.900 MeV < m� +m� < 939.565 MeV , (9)

and both �, � are stable if

|m� �m�| < 938.783 MeV .

Also, m�̃ > 937.900 MeV.
If m�̃ > mn, the only neutron dark decay channels are

n ! �� and n ! �̃⇤
! p + e�+ ⌫̄e, with branching frac-

tions governed by the strength of the �n� interaction. Even if
this coupling is zero, the lifetime of �̃ is long enough for the
anomaly to be explained. In the case 937.9 MeV < m�̃ <
mn, the particle �̃ can be produced on-shell and there are
three neutron dark decay channels: n ! �̃ �, n ! �� and
n ! �̃⇤

! p + e�+ ⌫̄e (when m�̃ > 938.783 MeV), with
branching fractions depending on the strength of the �n�
coupling. The rate for the decay n ! �̃⇤

! p + e�+ ⌫̄e
is negligible compared to that for n ! �̃ �. In the limit of a
vanishing �n� coupling this case reduces to n ! �̃ �.

An example of such a theory is

L
e↵
2 = L

e↵
1 (� ! �̃) + (��

¯̃���+ h.c.)

+ �̄
�
i/@ �m�

�
�+ @µ�

⇤@µ��m2
�|�|

2 . (10)

The term corresponding to n ! �� is

L
e↵
n!�� =

�� "

mn �m�̃
�̄n�⇤ . (11)

This yields the neutron dark decay rate

��n!�� =
|��|

2

16⇡

p
f(x, y)

mn "2

(mn �m�̃)2
, (12)

where

f(x, y) = [(1� x)2 � y2] [(1 + x)2 � y2]3

with x = m�/mn and y = m�/mn. A particle physics real-
ization of this scenario is provided by model 2 below.

For m�̃ > mn the missing energy signature has a branching
fraction ⇡ 1%. There will also be a very suppressed radiative
process involving a photon in the final state with a branching
fraction 3.5⇥ 10�10 or smaller.

As discussed earlier, in the case 937.9 MeV < m�̃ < mn

both the visible and invisible neutron dark decay channels are
present. The ratio of their branching fractions is

��n!�̃�

��n!��
=

2g2ne
2

|��|
2

(1� x̃2)3p
f(x, y)

, (13)

where x̃ = m�̃/mn, while their sum accounts for the neutron
decay anomaly, i.e.

��n!�̃� +��n!��

�n
⇡ 1% .

The branching fraction for the process involving a photon
in the final state ranges from ⇠ 0 to 1%, depending on the
masses and couplings. A suppressed decay channel involving
e+e� is also present.

Neutron ! dark matter + e+e�

This case is realized when the four-particle effective inter-
action involving the neutron, DM and an e+e� pair is present
and Br(n ! � e+e�) ⇡ 1%. The requirement on the DM
mass from Eq. (2) is

937.900 MeV < m� < 938.543 MeV

and the allowed energy range of the e+e� pair is

2me  Ee+e� < 1.665 MeV .

Assuming the effective term for n ! � e+e� of the form

L
e↵
n!�e+e� =  �̄n ē e

and a suppressed two-particle interaction �n, the neutron
dark decay rate is

��n =
2m5

n

128⇡3

Z (1�x)2

4z2

d⇠
p
⇠

�
⇠ � 4z2

� 3
2
⇥
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⇤

⇥

p
(1� x2 � ⇠)2 � 4 ⇠ x2 ,

where x = m�/mn and z = me/mn. It is maximized
for m� = 937.9 MeV, in which case it requires 1/

p
 ⇡

670 GeV to explain the anomaly. We will not analyze fur-
ther this possibility, but we note that a theory described by the
Lagrangian (10) with � coupled to an e+e� pair could be an
example.
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fraction in equilibrium. Repulsive DM-baryon interactions
can also stabilize the star, not by sti↵ening the EoS, but by
making it energetically expensive to produce DM particles
in a pure baryon medium (and vice versa). Therefore the
cross interactions can impede the creation of any significant
amount of DM inside the NS, thus maintaining NSs almost
pure (without DM present) despite the fact that free neu-
trons could decay to DM.

Before we present a specific example of a microscopic
model that can give all this, it is instructive to show how DM-
neutron interactions a↵ect the stability of NSs. We model
the interaction by a vector or scalar boson mediated Yukawa
potential

U = ±g�gn

4⇡

e
�m�r

r
, (1)

where + (�) is for vector (scalar) exchange, g�,n are the
couplings to DM and neutron respectively and m� is the
mass of the mediator. Couplings with equal (opposite) sign
result in repulsion (attraction) for vectors and vice versa for
scalars. DM self-interactions have a similar potential with
coupling g

2
� in place of g�gn. None of the models proposed

to date that explain the neutron decay anomaly lead to a
repulsive cross interaction, with the exception of Model 1
of [5] that has a photon in the final state. However it couples
to the neutron via a magnetic dipole interaction, which can
be attractive or repulsive depending on its orientation. We
expect that neutrons will occupy equally spin up and down
states, and therefore such interactions will average to zero,
hence not suitable in our case.

Equation of state: The energy density in a NS with
DM and the above interaction is

"(nn, n�) = "nuc(nn) + "�(n�) +
n�nn

2z2
, (2)

where nn,� are the neutron and DM number densities re-
spectively, "nuc is the energy density due to nuclear inter-
actions, "� is the energy density of DM and the last term
is the Yukawa energy density due to n-� interactions in the
mean field approximation where z ⌘ m�/

p
|g�gn|. The last

term in the energy density is valid as long as the star is large
compared to the Yukawa screening length, i.e. R � 1/m�.
Notice that the cross interaction depends simply on one pa-
rameter z. Long range forces are severely constrained and
therefore we are going to assume that the mediator has a
mass. The DM energy density including DM self-interactions
is

"� =
m

4
�

8⇡2

h
x

p
1 + x2

�
1 + 2x2

�
� log

⇣
x+

p
1 + x2

⌘i
±

n
2
�

2z02
,

x =

�
3⇡2

n�

�1/3

m�
, (3)

where z
0 ⌘ m�/g� and it is understood that the last term

corresponds to DM self-interactions with + (�) sign being re-
pulsive (attractive). The free energy cost at zero temperature
associated to creating a DM particle at fixed total number

density nF = nn + n� is just the change in internal energy,
i.e.

�E ⌘ @"(nF � n�, n�)

@n�
= µ�(n�)� µnuc(nn) +

nF � 2n�

2z2
,

(4)
where µi (i = �, nuc) represent the chemical potentials of
DM and neutrons respectively. A chemical equilibrium exists
when �E = 0. In a pure neutron environment where no DM
is present the energy cost is

�E0 = �E|n�=0 = m� � µnuc(nF) +
nF

2z2
. (5)

Notice, that the nuclear chemical potential µnuc > mn and
mn > m� for the dark decay to take place. Therefore in the
absence of DM self-interactions, weak DM-neutron interac-
tions (large z) makes neutron conversion thermodynamically
favored [6–8], whereas stronger DM-neutron cross interac-
tions (small z) lead to a large energy cost for converting
neutrons to DM that makes it energetically favored to have
zero DM density. For the nuclear EoS, we have chosen the
SLy-4 [25] which is a nuclear EoS without a quark core and
the power law EoS V3⇡ + VR [26] (which was also used in
Ref. [9]). Both EoS we are using can in isolation support
NSs with a mass larger than 2M�, hence are consistent with
observational data. As depicted in Fig. 1, for a given strength
of DM-neutron cross interaction (i.e., for a given z), there are
three possibilities: i) �E0 > 0 i.e., the system is in a pure
neutron phase simply because there is an energy cost to cre-
ate DM. As can be seen by inspection of Eq.(5), by strength-
ening cross interactions (i.e., by reducing z), the system can
always enter the �E0 > 0 regime. This is also shown graph-
ically in Fig. 1, where for a given total density nF, there is
always a z below which �E0 > 0 and no DM particles are
present. ii) �E0 < 0 and �E = 0 for some value of n� < nF.
In this case �E0 < 0 means that it is energetically favored to
convert some of the neutrons to DM. The condition �E = 0
insures chemical equilibrium and by enforcing this condition
using Eq. (4), one can determine the amount of DM present
(i.e., n�). iii) The last regime satisfies �E < 0 for any n�,
which means that e↵ectively all neutrons have converted to
DM particles. We measure number densities in units of the
nuclear density n0 = 0.16 fm�3. We will mainly focus on
DM-baryon cross interaction as the mechanism allowing NSs
to reach 2M�. However, we will also comment on the case
where DM self-interactions provide the needed support for
heavy NSs.
In order to estimate how heavy NSs can be, we use Eq. (2)

with our two choices of nuclear EoS [25, 26]. The pres-
sure is derived from the relation P = n

2
Fd("/nF)/dnF. In

the limit of zero temperature (an excellent approximation
for NSs), knowing the pressure and the energy density as
a function of n�, nnuc and the parameter z, allows us to
solve the relativistic hydrostatic equilibrium described by
the Tolmann-Oppenheimer-Volko↵ equation. By scanning
the central fermion density, we find the maximum mass for
the NS. Recall that n� is uniquely fixed from the chemical

47 x 1013 years

700 MeV 70 x 1013 years

of mass above 2 M� [41, 42, 102]. Therefore, in order to survive, the model of the neutron
stars must predict neutron stars of maximum mass of at least 2 M�. Fig.(1) indicates that the
dark fermions must have self-repulsion at 16 fm2 in order to be consistent to the observations.
Moreover, there is a significant reduction in the radius of the neutron stars after the decay.

The Fig.(2) shows the tidal deformability against the radius of the neutron star. The
analysis on the data gathered from the gravitational waves [43, 44, 103] indicated that a
neutron star of mass 1.4 M� must have tidal deformability in the range 70 - 580, with 90%
confidence. Fig.(2) shows that the dark fermions of self-repulsion 16 fm2 and dark bosons of
scattering length 1 fm very well satisfy the constraint on mass and tidal deformability.

Figure 1. The total mass vs radius of the neutron star is presented using l� = 1 fm.

Fig.(3) shows the contribution of the � bosons to the total mass of the neutron stars.
The � bosons contributes approximately 5% of the total mass of the neutron stars of 2 M�,
when the dark fermions have self-interaction 16 fm2.

This paragraph need correction based on the finding of Dipan The contribution
of � bosons is significant in a sense that If � bosons have any connection, or decay into
Standard Model particle (photons) then there is a chance to find a signal that may suggest a
connection between dark matter and photons........

Fig.(4) shows the luminosity against the age of the neutron stars. Most of the studies
indicate that the neutron stars cool down very quickly. Approximately, after a million years
the neutron stars have a luminosity 1031.5 J/s. Therefore, if the � boson decay into photon
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New Physics Interpretations
Figure 5. Total mass against the radius of the neutron star for different values of the mass of the �
boson, when the dark fermions have self-interaction 16 fm2 and the scattering length of dark bosons
is 1 fm.
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Consider a hypercharge mixing with the usual photon,

L =
✏

2 cos ✓W
F̃

0
µ⌫B

µ⌫ (4.7)

Then, the effective Lagrangian becomes,

L 2 e✏JµA
0
µ + e0✏ tan ✓WJ

0
µZµ + e0J

0
µA

0
µ (4.8)

where J
0
µ and e0 are the dark sector current and the dark photon coupling to the dark

sector. Once the Z boson is integrated out we can see that the coupling of the dark photon to
SM fermions is proportional to e✏, i.e a milicharged dark photon which are cosntrained from
various sources.

The effective coupling to neutrons can be written as,

L 2 e✏(n�µ⌫�F
0
µ⌫) (4.9)
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5 Spin-2

The final option is if the boson is a Spin-2 particle (I have to think a bit harder on how to
couple it to the neutron and the DM state � potentially a fermion. The way I see this is that
it requires a dimension 6 operator). If the Spin-2 particle decays to SM states, the effective
Lagrangian for this is given by,

L =
1

⇤
hµ⌫T

µ⌫
SM (5.1)

6 Conclusion
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4.1 Scalars

The first bosonic candidate is a scalar coupled to the electromagnetic field strength, Let’s
first assume that the boson is a Scalar which couples to photons with an effective interaction,

Lint =
Cs

feff
�Fµ⌫F

µ⌫ +
ml

feff
� ¯̀̀ + · · · (4.1)

where � is the scalar field, Fµ⌫ the electromagnetic field strength, and l the dirac spinor
for the leptonic. The overall normalization Cs

feff
is model dependent, while ml is the mass

of the lepton. Couplings to the neutron can be obtained by integrating out, for example
heavy fermions yielding dimension 6 operators, such that the effective neutron coupling can
be written as,

L 2 Lkin + �effn�� (4.2)

Numerous constraints exist on this coupling, depending on the mass and the coupling.
DS : Start adding constraints, SN1987A, Stellar Cooling, Collider, Low en-

ergy experiments, cosmology

4.2 Pseudo-scalars

The next possibility is that of a pseudoscalar that couples like an axion (like particle) to
photons, and derivatively to electrons
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Figure 4.
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µ�5`+ · · · (4.3)

There are several constraints on this set up, low energy and stellar , which need to be taken
into account.

As before the coupling to neutrons can be written as,

L 2 Lkin + �effn��
5� (4.4)

DS : Start adding constraints, SN1987A, Stellar Cooling, Collider, Low en-

ergy experiments, cosmology Main ref : Thamm, Pospelov

4.3 Spin-1

While the decay to a photon has been ruled, a possible solution is that the spin-1 boson can
be a dark (kinetically) mixed photon. The massless part of the most general theory of two
U(1)a,b abelian gauge bosons can be written as,

L = �1

4
Faµ⌫F

µ⌫
a � 1

4
Fbµ⌫F

µ⌫
b � "

2
Faµ⌫F

µ⌫
b (4.5)

The masses of these can be obtained via a Stuckelberg mechanism, or via a spontaneously
broken gauge symmetry

– 8 –

Pseudo-Scalars

Figure 4.

Lint =
Cs�

feff
�Fµ⌫F̃

µ⌫ +
1

feff
(@µ�)¯̀�

µ�5`+ · · · (4.3)

There are several constraints on this set up, low energy and stellar , which need to be taken
into account.

As before the coupling to neutrons can be written as,

L 2 Lkin + �effn��
5� (4.4)

DS : Start adding constraints, SN1987A, Stellar Cooling, Collider, Low en-

ergy experiments, cosmology Main ref : Thamm, Pospelov

4.3 Spin-1

While the decay to a photon has been ruled, a possible solution is that the spin-1 boson can
be a dark (kinetically) mixed photon. The massless part of the most general theory of two
U(1)a,b abelian gauge bosons can be written as,

L = �1

4
Faµ⌫F

µ⌫
a � 1

4
Fbµ⌫F

µ⌫
b � "

2
Faµ⌫F

µ⌫
b (4.5)

The masses of these can be obtained via a Stuckelberg mechanism, or via a spontaneously
broken gauge symmetry

– 8 –

In  the works :  A full analysis of complementary constraints on this scenario including stellar cooling bounds, low energy and 
collider experiments, BBN and CMB bounds
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Estimating Accurate Relic Densities for DM models with KK gravitons
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Estimating Accurate Relic Densities for DM models with KK gravitons
A light KK graviton with a lifetime greater than the age of the Universe. 


UV freeze-in through higher dimensional operators

The graviton has the following five polarization states, as defined in Chivukula, Foren, Mohan, Sengupta,

and Simmons (2020).

Tensor: �G = ±2, "µ⌫±2 = "µ±1"
⌫
±1, (9)

Vector: �G = ±1, "µ⌫±1 =
1p
2


"µ±1"

⌫
0 + "µ0"

⌫
±1

�
, (10)

Longitudinal: �G = 0, "µ⌫0 =
1p
6


"µ+1"

⌫
�1 + "µ�1"

⌫
+1 + 2"µ0"

⌫
0

�
. (11)

In the centre of momentum frame, we have the following 4-vectors defined for each of the particles.

Suppose that we choose the incoming quarks to be moving only in the z-direction. Here, the photon is

massless and the graviton is massive with mass mG. Suppose that the graviton exits with momentum k,
thus the photon has momentum �k.

pµ1 = (Ep1 , |p| ẑ) , p21 = m2
q , (12)

pµ2 = (Ep2 , � |p| ẑ) , p22 = m2
q , (13)

kµ1 = Ek1

⇣
1, �k̂

⌘
, k21 = 0, (14)

kµ2 = (Ek2 , k) , k22 = m2
G. (15)

We can define the momentum of the outgoing graviton k in terms of the inclination and azimuthal angle

pairing (✓, �) as per Chivukula et al. (2020) below.

k = |k| (sin ✓ cos�, sin ✓ sin�, cos ✓) . (16)

Furthermore, from Chivukula et al. (2020), the polarization vectors for momentum k2 are defined as

below in terms of the same angle pairs (✓,�). Note, we have explicitly computed these in the centre of

momentum frame with four-momentum k2 as defined above.

"µ±1 (k2) = ±e±i�

p
2

✓
0, � cos ✓ cos�± i sin�, � cos ✓ sin�⌥ i cos�, sin ✓

◆
, (17)

"µ0 (k2) =
Ek2

mG

✓s

1� m2
G

E2
k2

, k̂

◆
. (18)

1.1 t - Channel

Consider the following scattering Feynman diagram, with graviton hµ⌫ . Define the momentum entering

from the left (p1 and p2) and exiting to the right (k1 and k2). Here the quark (anti-quark) has momentum

p1 (p2) and the photon (graviton) has momentum k1 (k2).

q �

hµ⌫q̄

q

The scattering amplitude for this Feynman diagram is shown below. Note that the quarks and photon

have chirality polarization states �1,�2 and �3 = ±1 and the graviton has polarization states �G = ±2, ±1

and 0. The quark has charge Q and the the graviton has coupling strength g. Note that typically, since

the photon is outgoing, it should be conjugated, but "⇤µ� = "µ��, hence it we can relabel it to be positive,

as taken below.

iMt =

 
� iQg

4
�
t�m2

q

�
!
v̄�1 (p2) "

µ⌫
�G

(k2) [�µ (p1 � k1 � p2)⌫ + µ $ ⌫]
⇣
/p1 � /k1 +mq

⌘
/"�2

(k1)u�3 (p1) .

(19)

2

Freeze-In Dark Matter/ Feebly Interacting massive particles

  

Freeze-in: general idea

Andreas Goudelis

Freeze-out

Freeze-in 1

21 3

2

Tweaked from, arXiv:0911.1120

arXiv:hep-ph/0106249
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1

2

DM produced from decays/annihilations of other particles.

DM production disfavoured  Abundance freeze-in→

· DM interacts very weakly with the SM.

· DM has a negligible initial density.

Two basic premises :

Assume that in reaction A  B→ , ξ
A
/ξ

Β
 particles of type χ are destroyed/created. Integrated 

Boltzmann equation :

p.3

The matrix element contains information about the velocity averaged cross section

Unitarity limits for effective theories determine the validity of the theory
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G. (15)

We can define the momentum of the outgoing graviton k in terms of the inclination and azimuthal angle

pairing (✓, �) as per Chivukula et al. (2020) below.

k = |k| (sin ✓ cos�, sin ✓ sin�, cos ✓) . (16)

Furthermore, from Chivukula et al. (2020), the polarization vectors for momentum k2 are defined as

below in terms of the same angle pairs (✓,�). Note, we have explicitly computed these in the centre of

momentum frame with four-momentum k2 as defined above.
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p
2

✓
0, � cos ✓ cos�± i sin�, � cos ✓ sin�⌥ i cos�, sin ✓

◆
, (17)

"µ0 (k2) =
Ek2
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✓s

1� m2
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E2
k2

, k̂

◆
. (18)

1.1 t - Channel

Consider the following scattering Feynman diagram, with graviton hµ⌫ . Define the momentum entering

from the left (p1 and p2) and exiting to the right (k1 and k2). Here the quark (anti-quark) has momentum

p1 (p2) and the photon (graviton) has momentum k1 (k2).

q �

hµ⌫q̄

q

The scattering amplitude for this Feynman diagram is shown below. Note that the quarks and photon

have chirality polarization states �1,�2 and �3 = ±1 and the graviton has polarization states �G = ±2, ±1

and 0. The quark has charge Q and the the graviton has coupling strength g. Note that typically, since

the photon is outgoing, it should be conjugated, but "⇤µ� = "µ��, hence it we can relabel it to be positive,

as taken below.

iMt =

 
� iQg

4
�
t�m2

q

�
!
v̄�1 (p2) "

µ⌫
�G

(k2) [�µ (p1 � k1 � p2)⌫ + µ $ ⌫]
⇣
/p1 � /k1 +mq

⌘
/"�2

(k1)u�3 (p1) .

(19)

2

Matrix Element naively grows like 1/ M_{KK}^{2}

The graviton has the following five polarization states, as defined in Chivukula, Foren, Mohan, Sengupta,

and Simmons (2020).
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�
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⌫
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⌫
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�
. (11)

In the centre of momentum frame, we have the following 4-vectors defined for each of the particles.

Suppose that we choose the incoming quarks to be moving only in the z-direction. Here, the photon is
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thus the photon has momentum �k.
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q , (12)

pµ2 = (Ep2 , � |p| ẑ) , p22 = m2
q , (13)

kµ1 = Ek1

⇣
1, �k̂

⌘
, k21 = 0, (14)

kµ2 = (Ek2 , k) , k22 = m2
G. (15)

We can define the momentum of the outgoing graviton k in terms of the inclination and azimuthal angle

pairing (✓, �) as per Chivukula et al. (2020) below.

k = |k| (sin ✓ cos�, sin ✓ sin�, cos ✓) . (16)

Furthermore, from Chivukula et al. (2020), the polarization vectors for momentum k2 are defined as

below in terms of the same angle pairs (✓,�). Note, we have explicitly computed these in the centre of

momentum frame with four-momentum k2 as defined above.

"µ±1 (k2) = ±e±i�

p
2

✓
0, � cos ✓ cos�± i sin�, � cos ✓ sin�⌥ i cos�, sin ✓

◆
, (17)

"µ0 (k2) =
Ek2

mG

✓s

1� m2
G
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. (18)

1.1 t - Channel

Consider the following scattering Feynman diagram, with graviton hµ⌫ . Define the momentum entering

from the left (p1 and p2) and exiting to the right (k1 and k2). Here the quark (anti-quark) has momentum

p1 (p2) and the photon (graviton) has momentum k1 (k2).

q �

hµ⌫q̄

q

The scattering amplitude for this Feynman diagram is shown below. Note that the quarks and photon

have chirality polarization states �1,�2 and �3 = ±1 and the graviton has polarization states �G = ±2, ±1

and 0. The quark has charge Q and the the graviton has coupling strength g. Note that typically, since

the photon is outgoing, it should be conjugated, but "⇤µ� = "µ��, hence it we can relabel it to be positive,

as taken below.

iMt =

 
� iQg

4
�
t�m2

q

�
!
v̄�1 (p2) "

µ⌫
�G

(k2) [�µ (p1 � k1 � p2)⌫ + µ $ ⌫]
⇣
/p1 � /k1 +mq

⌘
/"�2

(k1)u�3 (p1) .

(19)

2

Only one EFT scale, should not have any low energy divergences  

Solution :  Sum the KK tower  , All low energy divergences should cancel out

Status : Messy matrix elements, 40 Helicity combinations, manipulations to get them into a tractable form. 

Sum the KK tower, Calculate the cross section , integrate the Boltzmann Equation

+t + u + contact diagrams

Incorrect estimations in the literature , Lee et al, Sanz et al, 

Sloth et al, Bernal et al, Mambrini et al ….



Summary

The Adelaide Theory Group has a rich DM/Cosmology theory programme working on a variety of topics

A lot of scope and directions to collaborate


