

Dipan Sengupta

Australian Government

Australian Research Council

Australian National University

2. Consequences of neutron decays into dark sector in neutron stars.

3. Estimating the relic of KK graviton dark matter accurately.

+ Hamman, DS, White, Williams, Wong

Meera Deshpande

Wasif Husain

Cacciapaglia(CNRS), + Lee(KIAS), DS, Williams

+

+

Two anomalies in cosmology

 $H_0 = 67.27 \pm 0.60 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $H_0 = 74.3 \pm 2.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$

$$S_8 \equiv \sigma_8 \sqrt{\Omega_m / 0.3}$$

 $S_8 = 0.834 \pm 0.016$ Planck
 $S_8 = 0.766^{+0.020}_{-0.014}$ KiDS-1000

Modifications to ΛCDM model

 S_8 and the H_0 tensions are correlated

Models of Decaying Dark Matter (DDM) to solve S₈

 $CDM \longrightarrow WDM + DR$

$$\varepsilon = (1/2)[1 - m_{\rm wdm}^2/m_{\rm dcdm}^2] \Gamma^{-2}$$

Suppression of Linear Matter power spectrum at intermediate and small scales with a cut-off scale determined by the free streaming length

Difference between ΛCDM and ΛDDM : Very small at low redshifts, and therefore Planck cannot distinguish them

$e^{-1} \simeq 55 \; { m Gyrs} \qquad arepsilon \simeq 0.7 \; \% \qquad$ Poulin-Abellan-Lavalle-Murgia : 2020

What kind of models can we construct? Look no further than SUSY

Consider a gravitino CDM populated thermally in the early universe through scatterings

 $\tilde{G}_{\mu} \to \tilde{N}_1 + N_1$

 $\Gamma(\tilde{G}_{\mu} \to \tilde{N}_1 + N_1) =$

Solves the Sigma_8 tension

Yanagagida et al. 2020

$$= \frac{m_{3/2}^3}{192\pi M_P^2} \times \left[1 - \left(\frac{m_1}{m_{3/2}}\right)\right]^2 \left[1 - \left(\frac{m_1}{m_{3/2}}\right)^2\right]^3$$

What if the reheating temperature is low ? Thermal processes are suppressed Gravitino abundance is populated non thermally through decays

$$\Gamma(\chi_1^0 \to \tilde{G}\gamma) \equiv \frac{\cos^2 \theta_{\rm W} m_{\chi_1^0}^5}{48M_P^2 m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\chi_1^0}^2} \right]^3 \left(1 + 3\frac{m_{\tilde{G}}^2}{m_{\chi_1^0}^2} \right)$$

Energy released in Photons

$$E_{\gamma} = \frac{m_{\chi_1^0}^2 - m_{\tilde{G}}^2}{2m_{\chi_1^0}}$$

Energy deposited in the thermal plasma causes spectral distortions

$$\tau \equiv 2.3 \times 10^7 \left(\frac{100 \text{ GeV}}{\Delta m}\right)^3 \text{s}$$

Fractional energy

$$E_{\rm SM} = E_{\gamma}/m_{\chi_1^0}$$

Energy Injection Constraints

<u>Spectral Distortions</u>

Distortions of the Blackbody spectrum of the primordial photon bath

Energy injection and deposition into the Intergalactic Medium (IGM)

$$\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}V}\Big|_{\mathrm{dep,c}} = \left.\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}V}\right|_{\mathrm{inj}} f_{\mathrm{c}} = \left.\frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}V}\right|_{\mathrm{inj}} f_{\mathrm{eff}} \,\chi_c \,\equiv \dot{\mathcal{Q}}\,\chi_c$$

Photon Phase Space Distribution

Distortions manifested in terms of temperature shifts g, chemical potential distortions mu, and Compton distortions y

injection efficiency function $f_{\text{eff}}(z)$ deposition fraction $\chi_c(z)$

Similar considerations for axino SuperWimps: Additional freedom in decay width due to axion decay constant

In consideration : Complementarity between collider, Warm DM bounds Future : Axino/Gravitino decays for solving Hubble/S₈ tensions consistent with constraints Release Code to do understand general multistep process in Class/Exoclass Other DDM scenarios

2. Consequences of neutron decays into dark sector in neutron stars.

3. Estimating the relic of KK graviton dark matter accurately.

+ Hamman, DS, White, Williams, Wong

Meera Deshpande

Wasif Husain

+

Bottle vs Beam experiments

$$\begin{aligned} n \to p + e^{-} + \bar{\nu}_{e} & \mathcal{M} = \frac{1}{\sqrt{2}} \, G_{F} V_{ud} \, g_{V} \left[\bar{p} \, \gamma_{\mu} n - \lambda \, \bar{p} \, \gamma_{5} \gamma_{\mu} n \right] \left[\bar{e} \, \gamma^{\mu} (1 - \gamma_{5}) \nu \right] \\ \tau_{n} &= \frac{4908.7 (1.9) \, \mathrm{s}}{|V_{ud}|^{2} (1 + 3 \, \lambda^{2})} & \tau_{n} \text{ between } 875.3 \, \mathrm{s} \text{ and } 891.2 \, \mathrm{s} \text{ within } 3 \, \sigma \end{aligned}$$
$$\tau_{n}^{\text{beam}} &= 888.0 \pm 2.0 \, \mathrm{s} & \tau_{n}^{\text{bottle}} = 879.6 \pm 0.6 \, \mathrm{s} \end{aligned}$$

 $\Delta \Gamma_n^{\rm exp} = \Gamma_n^{\rm bottle} - \Gamma_n^{\rm beam} \simeq 7.1 \times 10^{-30} \; {\rm GeV}$

n

 013.0 ± 0.05

New Physics Interpretations

New Physics scenarios :

Set II

DM quantum numbers		DM interactions		
L	spin	dimension	with quarks	wit
0	1/2	6	$\chi u d d$	
0	1/2	9	$\chi\chi\chi u dd$	
0	0	9	$\phi^3(udd)^2$	
0	0	7	$\phi(udd)^2$	
1	1/2	4, 6	$\chi LH, \chi\ell far{f}$	$\chi \ell$
2	0	6,8	$\phi(LH)^2, \phi\ell\ell X q \bar{q}$	ϕu
1	0	7	$\phi LQQQ, \phi\ell uud$	ϕ
-1	0	8	$\phi ar{\ell} X q q q$	$\phi n ar{ u}, \phi$
2	1/2	9	$\chi\ell u q q q$	χn
	$ quantu L \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 1 \\ -1 \\ 2 $	Lspin01/201/2000011/22010-1021/2	quantum numbersdimension L spindimension01/2601/2900900711/24,6206,8107-10821/29	quantum numbersDM interactionLspindimensionwith quarks01/26 $\chi u d d$ 01/29 $\chi \chi \chi u d d$ 009 $\phi^3 (u d d)^2$ 007 $\phi (u d d)^2$ 11/24,6 $\chi LH, \chi \ell f \bar{f}$ 206,8 $\phi (LH)^2, \phi \ell \ell X q \bar{q}$ 107 $\phi LQQQ, \phi \ell u u d$ -108 $\phi \bar{\ell} X q q q$ 21/29 $\chi \ell \nu q q q$

Fornal-Grienstein, Nelson et al ...

h hadrons

 χn $\chi \chi \chi n$ $\phi^{3} n^{2}$ $\phi n n$ $\ell \pi, \chi \ell p \bar{n}$ $\nu \nu, \phi \ell \ell \pi \pi$ $\phi n \nu, \phi p \ell$ $\phi \Delta^{-} \bar{\ell}, \phi n \pi^{-} \bar{\ell}$ $n \nu \nu, \chi p \ell \nu$

Strumia's classification

$$n \rightarrow \chi \chi \chi$$

Neutron Star Considerations with the decay

The new decay softens the neutron star EOS at high densities — Makes it impossible to support NS above 2 solar masses

Two Solutions

- baryon fraction in equilibrium
- 2. Repulsive DM-Baryon interactions : energetically disfavours DM production in a pure baryonic medium

$$U = \pm \frac{g_{\chi}g_n}{4\pi} \frac{e^{-m_{\phi}r}}{r}$$

TOV equation for hydrostatic equilibrium with DM and Neutrons Grinstein et al. 2018

In principle can cause problems by adding to N_{eff} : Ideally should decay before start of BBN to avoid all constraints \mathcal{O}

1. Large repulsive self interactions between DM, stiffens the EOS by raising DM chemical potential, reduces DM to

New Physics Interpretations

What if the boson decayed ?

How do we estimate the mass and the lifetime of the Boson?

Urca and inverse Urca processes cool neutron stars down

neutron stars have a luminosity $10^{31.5}$ erg/s at 1 M years

Additional cooling process due to SM particles from boson decays should not cool it below $10^{31.5}$ erg/s

300 MeV m_{ϕ} 47 x 10¹³ years **700 MeV 70 x 10¹³ years**

Page and Applegate 92

Scalars

 $\mathcal{L}_{int} = \frac{C_s}{f_{eff}} \phi F_{\mu\nu} F^{\mu\nu} + \frac{m_l}{f_{eff}} \phi \bar{\ell} \ell + \cdots \bigg|$

 \mathcal{L}_{int} =

 $\mathcal{L} \in L_{kin} + \lambda_{eff} n \chi \phi$

Spin-1

Photon is (almost) ruled out experimentally

 $\mathcal{L} = \frac{\epsilon}{2\cos\theta_W} \tilde{F}'_{\mu\nu} B^{\mu\nu} \left| \right.$

 $\mathcal{L} \in e\epsilon (n\sigma^{\mu\nu}\chi F_{\mu}'$

In the works : A full analysis of complementary constraints on this scenario including stellar cooling bounds, low energy and collider experiments, BBN and CMB bounds

New Physics Interpretations

Pseudo-Scalars

$$=\frac{C_{s\gamma}}{f_{eff}}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}+\frac{1}{f_{eff}}(\partial_{\mu}\phi)\bar{\ell}\gamma^{\mu}\gamma^{5}\ell+\cdots$$

$$\mathcal{L} \in L_{kin} + \lambda_{eff} n \chi \gamma^5 \phi$$

Spin-2

$$'_{\mu\nu})$$

$$\mathcal{L} = \frac{1}{\Lambda} h_{\mu\nu} T^{\mu\nu}_{SM}$$

2. Consequences of neutron decays into dark sector in neutron stars.

3. Estimating the relic of KK graviton dark matter accurately.

+ Hamman, DS, White, Williams, Wong

Meera Deshpande

Wasif Husain

+ DS, Thomas

+

+ Cacciapaglia, Lee, DS

Estimating Accurate Relic Densities for DM models with KK gravitons

Massive Spin-2 KK gravitons arise as a result of compactifying extra dimensions

$$\mathcal{L} = \frac{1}{\Lambda} h_{\mu\nu} T^{\mu\nu}_{SM}$$

Naive Expectation of all EFT scales in the theory

Estimating Accurate Relic Densities for DM models with KK gravitons

A light KK graviton with a lifetime greater than the age of the Universe.

UV freeze-in through higher dimensional operators

The matrix element contains information about the velocity averaged cross section

Unitarity limits for effective theories determine the validity of the theory

Estimating Accurate Relic Densities for DM models with KK gravitons

$$\lambda_{G} = \pm 2, \qquad \varepsilon_{\pm 2}^{\mu\nu} = \varepsilon_{\pm 1}^{\mu} \varepsilon_{\pm 1}^{\nu},$$

$$\lambda_{G} = \pm 1, \qquad \varepsilon_{\pm 1}^{\mu\nu} = \frac{1}{\sqrt{2}} \left[\varepsilon_{\pm 1}^{\mu} \varepsilon_{0}^{\nu} + \varepsilon_{0}^{\mu} \varepsilon_{\pm 1}^{\nu} \right],$$

$$l: \lambda_{G} = 0, \qquad \varepsilon_{0}^{\mu\nu} = \frac{1}{\sqrt{6}} \left[\varepsilon_{\pm 1}^{\mu} \varepsilon_{-1}^{\nu} + \varepsilon_{-1}^{\mu} \varepsilon_{\pm 1}^{\nu} + 2\varepsilon_{0}^{\mu} \varepsilon_{0}^{\nu} \right]$$

Matrix Element naively grows like 1/ M_{KK}^{2}

Only one EFT scale, should not have any low energy divergences

Solution: Sum the KK tower, All low energy divergences should cancel out

Status : Messy matrix elements, 40 Helicity combinations, manipulations to get them into a tractable form. Sum the KK tower, Calculate the cross section, integrate the Boltzmann Equation

$$\varepsilon_0^{\mu}(k_2) = \frac{E_{k_2}}{m_G} \left(\sqrt{1 - \frac{m_G^2}{E_{k_2}^2}}, \, \hat{k} \right)$$

Incorrect estimations in the literature, Lee et al, Sanz et al, Sloth et al, Bernal et al, Mambrini et al

The Adelaide Theory Group has a rich DM/Cosmology theory programme working on a variety of topics

A lot of scope and directions to collaborate

Australian Research Council

Australian National University

