

Lead materials and chemical reagents – What's their lead-210 background?

<u>M.B. Froehlich^{1,2}</u>, M.A.C. Hotchkis³, F. Dastgiri^{1,2}, L.K. Fifield¹, D. Koll^{1,4}, S. Merchel^{1,4,5}, S. Pavetich¹, Z. Slavkovská^{1,2}, S.G. Tims¹, A. Wallner^{1,4}

¹Department of Nuclear Physics and Accelerator Applications, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia ²ARC Centre of Excellence for Dark Matter Particle Physics, Australia

³Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia

⁴Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany

⁵University of Vienna, Faculty of Physics, Isotope Physics, 1090 Vienna, Austria

Australian Government Australian Research Council

Australian National University

WES

What do we want to do, why & how?

- Goal: Characterise and quantify radioimpurities in detector material (NaI(TI)) ⁴⁰K, U & Th decay series, ²¹⁰Pb, ¹²⁹I, *etc*.
- Why: Mimic signals in region of interest, limit sensitivity
- How: Combination of analytical chemistry and Accelerator
- Mass Spectrometry.

Challenges & Strengths

AMS: is a relative measurement (isotopic ratio, ²¹⁰Pb/²⁰⁸Pb), carrier. Pb-210: decay product of U-238 \rightarrow omnipresent. Nal: Expected ²¹⁰Pb < 3.0×10⁻² mBq/kg (²¹⁰Pb/²⁰⁸Pb = 1.33×10⁻¹⁴) [1].

We need to: Screen potential Pb carriers and chemicals/reagents to be used.

Currently, we are able to measure 210 Pb/ 208 Pb ratios down to 1×10^{-14} [2].

[1] Antonello et *al.*, Astroparticle Physics, 2019; 106:1-9. [2] Froehlich et *al.*, Nucl Instrum Methods Phys Res B, 2022; 529:18-23.

Pb carriers and chemical reagents

Pb compound	Pb compound	Chemical reagent	Reagent
Pb (metal powder)	Pb_20001 (roof)	AE resin (1-X8, 100-200 mesh, Cl ⁻ form)	Ag (Ag powder)
PbO	²⁰⁴ Pb & ²⁰⁶ Pb	HCI (Suprapur [®])	Nal-250
PbO ₂	ICP-MS Pb	Fe (Fe wire)	Chemical blank
Pb ₃ O ₄	brick	Al (Al cathodes)	Ag, AgF & AgF ₂ *
PbF ₂	LNGS material	Milli-Q water	SbF ₃ *
U. Chicago Spanish lead	Hampton Court Palace roof	Sub-boiled Milli-Q water	
PNNL ancient lead	LANL stock & Chicago stock	Cu (Cu cathodes)	

*No chemistry

250 g Nal in 2M HCl

 $6M HCI \rightarrow Pb$

Michaela Froehlich 6

Results – Pb carriers

Pb compound	²¹⁰ Pb [cts]	²¹⁰ Pb/Pb	Pb compound	²¹⁰ Pb [cts]	²¹⁰ Pb/Pb
Pb (metal powder)	0		ICP-MS Pb	$7^{+3.30}_{-2.75}$	9.6×10 ⁻¹⁴
PbO	$1^{+1.75}_{-0.63}$	1.2×10 ⁻¹⁴	brick	0	
PbO ₂	$1^{+1.75}_{-0.63}$	1.1×10^{-14}	LNGS	0	
Pb ₃ O ₄	$4^{+2.78}_{-1.66}$	4.8×10 ⁻¹⁴	U. Chicago Spanish lead	$4^{+2.78}_{-1.66}$	9.1×10 ⁻¹⁵
PbF ₂	$4^{+2.78}_{-1.66}$	3.9×10 ⁻¹⁴	PNNL ancient lead	$3^{+2.30}_{-1.90}$	2.7×10 ⁻¹⁵
Pb_20001 (roof)	$1^{+1.75}_{-0.63}$	7.3×10 ⁻¹⁵	Hampton Court Palace roof	$4^{+2.78}_{-1.66}$	2.5×10 ⁻¹⁵
²⁰⁴ Pb	0		LANL stock	$3^{+2.30}_{-1.90}$	1.7×10 ⁻¹⁵
²⁰⁶ Pb	$1^{+1.75}_{-0.63}$	9.1×10 ⁻¹⁵	U. Chicago stock	33±6	2.3×10 ⁻¹⁴

Nal: Expected ²¹⁰Pb < 3.0×10⁻² mBq/kg → 210 Pb/²⁰⁸Pb = 1.33×10⁻¹⁴ [1] → 210 Pb/Pb = 7.0×10⁻¹⁵.

[1] Antonello et al., Astroparticle Physics, 2019; 106:1-9.

Results – chemical reagents

Chemical reagent	²¹⁰ Pb [cts]	²¹⁰ Pb/Pb	Chemical reagent	²¹⁰ Pb [cts]	²¹⁰ Pb/Pb
AE resin (1-X8, 100-200 mesh, Cl ⁻ form)	0		Sub-boiled Milli-Q water (1 L)	0	
HCI (Suprapur [®])	$2^{+2.25}_{-1.26}$	5.4×10-1 ⁴	Sub-boiled Milli-Q water (10 L)	$1^{+1.75}_{-0.63}$	1.7×10-1 ³
Fe (Fe wire)	$1^{+1.75}_{-0.63}$	7.7×10-1 ⁴	Ag (Goodfellow 99.99%)	$2^{+2.25}_{-1.26}$	1.3×10-1 ⁴
Al (Al cathodes)	$2^{+2.25}_{-1.26}$	1.1×10-1 ²	Nal-250	-	-
Cu (Cu cathodes)	-	-	Chemical Blank	$2^{+2.25}_{-1.26}$	2.6×10-1 ³
Milli-Q water (1 L)	0		PbF ₂ + Ag (1:10)	27±5	4.1×10-1 ⁴
Milli-Q water (5 L)	$5^{+2.81}_{-2.25}$	2.6×10-1 ³	PbF ₂ + AgF (1:10)	$15^{+4.32}_{-3.68}$	1.9×10-1 ⁴
Milli-Q water (10 L)	22±5	7.4×10-1 ³	$PbF_{2} + AgF_{2}$ (1:10)	29±5	2.0×10-1 ⁴
Milli-Q water (20 L)	$6^{+3.28}_{-2.18}$	3.6×10-1 ³	$PbF_{2} + SbF_{3}$ (1:10)	$4^{+2.78}_{-1.66}$	2.9×10-1 ⁴

Results – chemical reagents

Chemical reagent	²¹⁰ Pb [cts]	²¹⁰ Pb/Pb	Chemical reagent	²¹⁰ Pb [cts]	²¹⁰ Pb/Pb
AE resin (1-X8, 100-200 mesh, Cl ⁻ form)	0		Sub-boiled Milli-Q water (1 L)	0	
HCI (Suprapur [®])	$2^{+2.25}_{-1.26}$	5.4×10-1 ⁴	Sub-boiled Milli-Q water (10 L)	$1^{+1.75}_{-0.63}$	1.7×10-1 ³
Fe (Fe wire)	$1^{+1.75}_{-0.63}$	7.7×10-1 ⁴	Ag (Goodfellow 99.99%)	$2^{+2.25}_{-1.26}$	1.3×10-1 ⁴
Al (Al cathodes)	$2^{+2.25}_{-1.26}$	1.1×10-1 ²	Nal-250	-	-
Cu (Cu cathodes)	-	-	Chemical Blank	$2^{+2.25}_{-1.26}$	2.6×10-1 ³
Milli-Q water (1 L)	0		PbF ₂ + Ag (1:10)	27±5	4.1×10-1 ⁴
Milli-Q water (5 L)	$5^{+2.81}_{-2.25}$	2.6×10-1 ³	PbF ₂ + AgF (1:10)	$15_{-3.68}^{+4.32}$	$1.9 \times 10 - 1^4$
Milli-Q water (10 L)	22±5	7.4×10-1 ³	$PbF_{2} + AgF_{2}$ (1:10)	29±5	2.0×10-1 ⁴
Milli-Q water (20 L)	$6^{+3.28}_{-2.18}$	3.6×10-1 ³	$PbF_{2} + SbF_{3}$ (1:10)	$4^{+2.78}_{-1.66}$	2.9×10-1 ⁴

Milli-Q water: ~0.2 mBq/L Sub-boiled water: ~0.09 mBq/L

Optimising the chemical procedure

- Large mass of Nal is challenging for
- chemical extraction of Pb (85 % is I).
- Tests using Anion Exchange resin 1-X8
- (100-200 mesh, Cl⁻ form, 2 ml) and
- **Sr resin** (100-150 µm, 2 ml).
- Anion Exchange resin \rightarrow poor retention,
- i.e., pre-concentration (Fe/Pb co-ppt)
- Sr resin \rightarrow high retention for Pb but resin is bleeding.

Optimising the chemical procedure

- Large mass of NaI is challenging for chemical extraction of Pb (85 % is I). Tests using **Anion Exchange resin 1-X8** (100-200 mesh, Cl⁻ form, 2 ml) and **Sr resin** (100-150 µm, 2 ml).
- Anion Exchange resin → poor retention, i.e., pre-concentration (Fe/Pb co-ppt)

Sr resin \rightarrow high retention for Pb but resin is bleeding.

Thank you for your attention!

Please take a tour: physics.anu.edu.au/tour

Any questions?

Michaela Froehlich Department of Nuclear Physics T: +61 2 6125 1612 E: michaela.froehlich@anu.edu.au Mentoring and Careers Portfolio

Equity and Diversity Portfolio

Australian Government Australian Research Council

THE UNIVERSITY OF MELBOURNE

INTERNATIONAL PARTNER ORGANISATIONS:

Universiteit van Amsterdam

