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• Peccei-Quinn (PQ) symmetry (1977):  A new global symmetry that when 
broken gives rise to a pseudoscalar field → Axion 

• The QCD Axion solves the strong CP problem

• AND the properties of axions also make them a popular dark matter 
candidate

• Axions may interact with a strong B field to produce a photon with frequency 
related to ma
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• SMASH model predicts ma between 50 and 200 
μeV
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• High frequency (>15 GHz) axion haloscope hosted 

at UWA

• Why high frequency?

• The high frequency parameter space is largely 
unexplored 

• SMASH model predicts ma between 50 and 200 
μeV

• QCD lattice simulations favour 40 ≤ ma ≤ 180 μeV

• High frequency scans are hard
df
dt

∝ f −14/3 →
cajohare.github.io/AxionLimits

SMASH

http://cajohare.github.io/AxionLimits
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ORGAN Run Plan

• Phase 1: Targeted searches 
around 15-16 GHz and 26-27 
GHz ~month scale 

• Phase 2: Wider searches 
(15-50GHz) building on 
expertise gained in Phase 1 
~ year scale

SQL Amps

Most optimistic:

Efficient GHz SPC

HEMT Amps

✅

Coming Soon..
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•We scanned for ~ 3.5 weeks (~700MHz)
• ~ 600 cavity positions 
• Typical values: 

•QL = 3500

•  Tsys = 6K

•B0 = 11.5T
• IQ mixer and hybrid coupler for image 

rejection
• Zero dead time FFT on FPGA (from ANU)
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•   Δνbin ≈ 477 Hz

• Visible thermal profile of the cavity 
mode

• Thermal noise after many averages

• Sum up all vertically overlapping RF 
bins 

Data Taking 
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Data Analysis 
• Remove large scale baseline variations with Savitzky-Golay filter 

• Axions will appear as excess power above the mean thermal noise 

•  -> sum up adjacent bins due to axion lineshapeΔνa ∼ 32Δνbin
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Phase 1a Limits 

• Limits set between 15.28-16.23 GHz at
 (ALP cogenesis)∼ 3 × 10−12gaγγ

• Most sensitive high frequency search yet

• Gaps to be filled in future phases 

• Published now in Science Advances
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Improving Sensitivity
• Decrease : Run at mK temperatures and use quantum limited amps Tsys

• Increase V: Multiple cavities

• Increase : Superconducting cavities with Qcav Q ∼ 105 − 106

  

Bulk NbTi

Sputtered Nb3Sn

ORGAN Q  
• 6-7 GHz clamshell cavity


• Using a JPA at mK


• Plan 5-10 x KSVZ sensitivity 

• Commence in 2023 in 7 T 

Magnet

 




  

ADMX Collaboration 

• Axion Dark Matter eXperiment (ADMX)


• UWA is one of the nodes of ADMX



ADMX so far
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ADMX so far

Reached DFSZ sensitivity!

• “Medium Resolution” channel searches for virialized axions
• There is also a “High Resolution” channel searching for non-virialized axions
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Non-Virialized Axions 

• Late infall axions have not yet thermalized with the 
rest of the galactic halo 

•  
δf
f

=
δE
E

≈
vδv
c2

• Cold axion flows have very narrow velocity dispersions 

•   (higher/lower depending on the flow)Qa ∼ 109

• For ADMX @ 850MHz & the “Big Flow”,   Δf ≲ 480 mHz

• Cold flows could have axion density greater  Improved discovery potential ρa →
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HiRes Search 

16

• Exponential distribution

• Choose some threshold cut  → 14σ

• Anything above 14  is a “trigger”σ

• If this trigger is an axion it should be  
persistent across scans

• An axion should also enhance with 
the cavity Lorentzian line shape

• Diurnal and sidereal modulation 

14
 σ

14  σ
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Low Frequency ADMX & ORGAN 

• ADMX future searches will take place inside large MRI magnet to be housed at Fermilab


• Low frequency working group led by Ben McAllister


• One area of interest is low mass range (100-500 MHz)


• Cavities are just too big to reach ~100 MHz


• Re-entrant cavity or novel design needed 


Gap

Segment 
Height

Outer Scope Radius

Inner  
Scope Radius
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Questions?


