Exploring the cosmological dark matter coincidence with infrared fixed points

Alex Ritter, Raymond Volkas

arXiv: 2210.11011

The cosmological coincidence

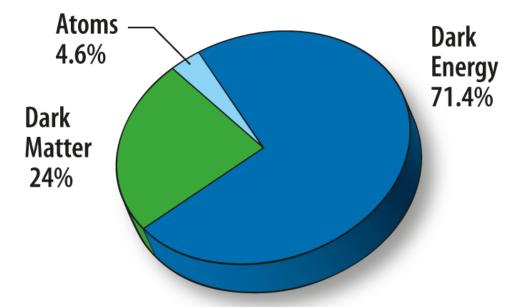
Large range of DM candidates

- Axions, WIMPs, sterile neutrinos, PBHs...
- How to guide our model building?

Clues from current observational evidence:

 Apparent coincidence in the mass densities of visible and dark matter

 $\Omega_{\rm DM} \simeq 5\Omega_{\rm VM}$



TODAY
https://wmap.gsfc.nasa.gov/universe/uni_matter.html

Parameter	TT,TE,EE+lowE+lensing+BAO 68% limits		
$\Omega_{\rm b}h^2$	0.02242 ± 0.00014		
$\Omega_{\rm c}h^2$	0.11933 ± 0.00091		
$\Omega_{\rm c}h^2$	0.11933 ± 0.00091		

Planck 2018, arXiv: 1807.06209

Explaining the coincidence

Our goal is to build models in which the mass densities of visible and dark matter are naturally of a similar order of magnitude

This is a problem in two parts: $\,\Omega_X\,=\,n_X m_X/
ho_c\,$

Relating number densities

$$n_B \sim n_D$$

Relating particle masses $m_B \sim m_D$

Relating number densities - ADM >

The **visible** number density: asymmetry between baryons and antibaryons (or a nonzero baryon number B_V)

$$\Omega_{
m VM} \equiv rac{
ho_p -
ho_{ar p}}{
ho_c} \simeq rac{
ho_p}{
ho_c}$$
 proton critical

In Asymmetric Dark Matter models there exists a similar asymmetry in a dark baryon number ${\cal B}_{\cal D}$

Wide range of ADM literature where $\,n_B \sim n_D\,$

Most ADM models do not motivate $\,m_B \sim m_D$

These are **not** satisfactory explanations of the coincidence problem

Relating particle masses

The **visible** baryon mass: largely from the QCD confinement scale Λ_{QCD}

Dark matter: baryon-like bound states of a QCD-like confining gauge group $SU(3)_{dOCD}$ with

$$\Lambda_{\rm QCD} \sim \Lambda_{\rm dQCD}$$

There are two main ways to achieve this:

- 1. Introduce a symmetry between $SU(3)_{QCD}$ and $SU(3)_{dQCD}$ e.g. AR, Volkas: 2101.07421
- 2. The gauge couplings of the two groups can evolve to some *infrared fixed point*

Infrared fixed points & Dark QCD

Bai and Schwaller [1306.4676]

- Dark QCD $SU(3)_{dQCD}$
- New fields
 - All at a heavy mass scale M
 - Except for some light quarks (to be confined into dark baryons)

Field	$SU(3)_{\rm QCD} \times SU(3)_{\rm dQCD}$	Mass	Multiplicity
Fermion	(3,1)	M	$n_{f_{c,h}}$
	(1 , 3)	$<\Lambda_{\rm dQCD}$	$n_{f_{d,l}}$
	(1, 3)	M	$n_{f_{d,h}}$
	(3 , 3)	M	n_{f_j}
Scalar	(3,1)	M	n_{s_c}
	(1 , 3)	M	n_{s_d}
	(3 , 3)	M	n_{s_j}

Infrared fixed points & Dark QCD

Bai and Schwaller [1306.4676]

- Dark QCD $SU(3)_{dQCD}$
- New fields
 - All at a heavy mass scale M
 - Except for some light quarks (to be confined into dark baryons)

Get coupled two-loop beta-functions for the coupling constants

$$\beta_c = \frac{g_c^3}{16\pi^2} \left[\frac{2}{3} \left(n_{f_c} + 3n_{f_j} \right) + \frac{1}{6} \left(n_{s_c} + 3n_{s_j} \right) - 11 \right]$$

$$+ \frac{g_c^5}{(16\pi^2)^2} \left[\frac{38}{3} \left(n_{f_c} + 3n_{f_j} \right) + \frac{11}{3} \left(n_{s_c} + 3n_{s_j} \right) - 102 \right]$$

$$+ \frac{g_c^3 g_d^2}{(16\pi^2)^2} \left[8n_{f_j} + 8n_{s_j} \right],$$

Field	$SU(3)_{\rm QCD} \times SU(3)_{\rm dQCD}$	Mass	Multiplicity	
Fermion	(3,1)	M	$n_{f_{c,h}}$	
	(1 , 3)	$<\Lambda_{\rm dQCD}$	$n_{f_{d,l}}$	
	(1,0)	M	$n_{f_{d,h}}$	
	(3,3)	M	n_{f_j}	
Scalar	(3,1)	M	n_{s_c}	
	(1,3)	M	n_{s_d}	
	(3,3)	M	n_{s_j}	

Infrared fixed points & Dark QCD

Bai and Schwaller [1306.4676]

- Dark QCD $SU(3)_{dQCD}$
- New fields
 - All at a heavy mass scale M
 - Except for some light quarks (to be confined into dark baryons)

Get coupled two-loop beta-functions for the coupling constants

$$\beta_c = \frac{g_c^3}{16\pi^2} \left[\frac{2}{3} \left(n_{f_c} + 3n_{f_j} \right) + \frac{1}{6} \left(n_{s_c} + 3n_{s_j} \right) - 11 \right]$$

$$+ \frac{g_c^5}{(16\pi^2)^2} \left[\frac{38}{3} \left(n_{f_c} + 3n_{f_j} \right) + \frac{11}{3} \left(n_{s_c} + 3n_{s_j} \right) - 102 \right]$$

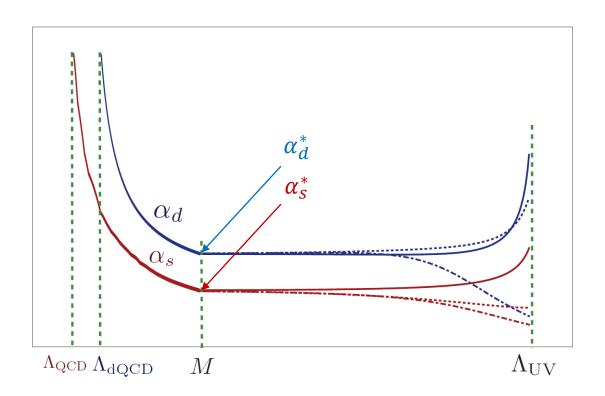
$$+ \frac{g_c^3 g_d^2}{(16\pi^2)^2} \left[8n_{f_j} + 8n_{s_j} \right],$$

Field	$SU(3)_{\rm QCD} \times SU(3)_{\rm dQCD}$	Mass	Multiplicity	
	(3,1)	M	$n_{f_{c,h}}$	
Fermion	(1 , 3)	$<\Lambda_{\rm dQCD}$	$n_{f_{d,l}}$	
	(1,0)	M	$n_{f_{d,h}}$	
	(3,3)	M	n_{f_j}	
Scalar	(3 , 1)	M	n_{s_c}	
	(1 , 3)	M	n_{s_d}	
	(3,3)	M	n_{s_j}	

Depending on the field content (model), can have an **infrared fixed point** where

$$\beta_c(\alpha_s^*, \alpha_d^*) = \beta_d(\alpha_s^*, \alpha_d^*) = 0$$

Relating the confinement scales

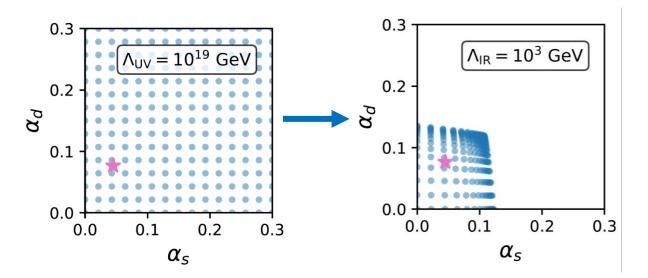


- 1. the coupling constants evolve to the fixed point (α_s^*, α_d^*) regardless of their initial value in the UV
- 2. The decoupling scale M is determined by matching the running of α_s below M with experiment
- 3. The dark confinement scale Λ_{dQCD} is then determined by running α_d until it reaches $\pi/4$

Process: model (field content) $\rightarrow \{\alpha_s^*, \alpha_d^*\} \rightarrow M \rightarrow \Lambda_{dQCD}$

However!

Couplings do not always evolve to their IRFP values by the decoupling scale



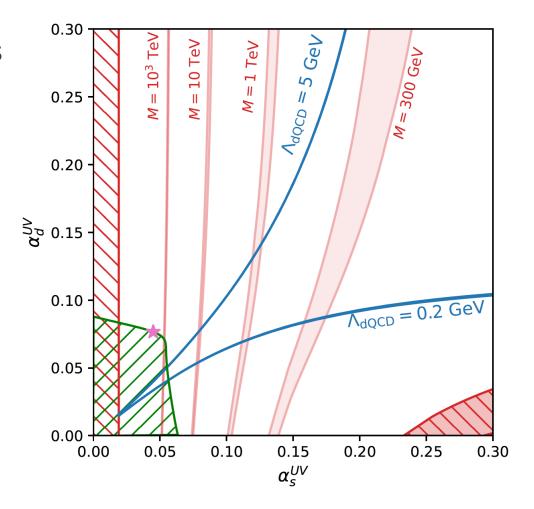
- 1. the coupling constants evolve to the fixed point (α_s^*, α_d^*) regardless of their initial value in the UV
- 2. The decoupling scale M is determined by matching the running of α_s below M with experiment
- 3. The dark confinement scale Λ_{dQCD} is then determined by running α_d until it reaches $\pi/4$

New process: **model**, $\{\alpha_s^{UV}, \alpha_d^{UV}\} \rightarrow M \rightarrow \Lambda_{dQCD}$

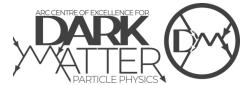
Explaining the coincidence

Goal: obtain similar confinement scales for visible and dark QCD

 $0.2~{
m GeV} < \Lambda_{dQCD} < 5~{
m GeV}$



Explaining the coincidence

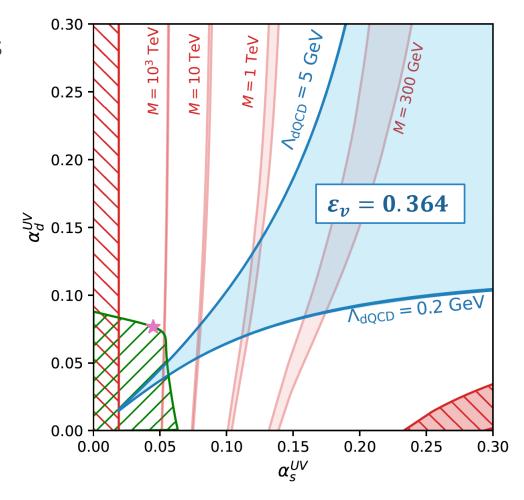


Goal: obtain similar confinement scales for visible and dark QCD

$$0.2 \text{ GeV} < \Lambda_{dQCD} < 5 \text{ GeV}$$

Define ε_v

- \circ 'viable fraction' of $\{\alpha_s^{UV},\alpha_d^{UV}\}$ parameter space
- simple heuristic for the naturalness of a given model

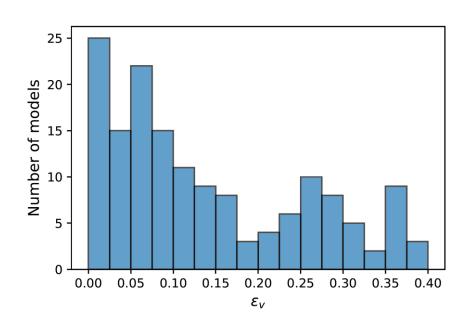


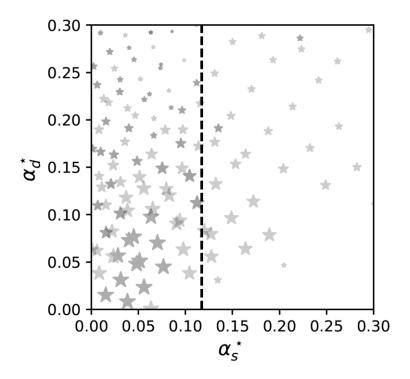
Results



First looked at models with at most 3 of each new field

- **12,288** models
- 155 with a perturbative IRFP

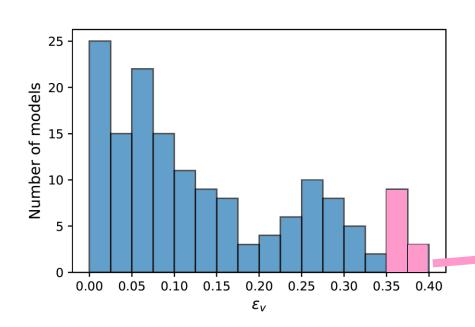


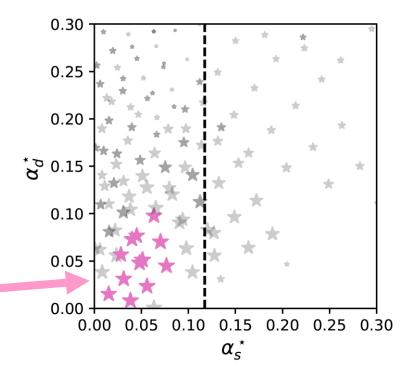


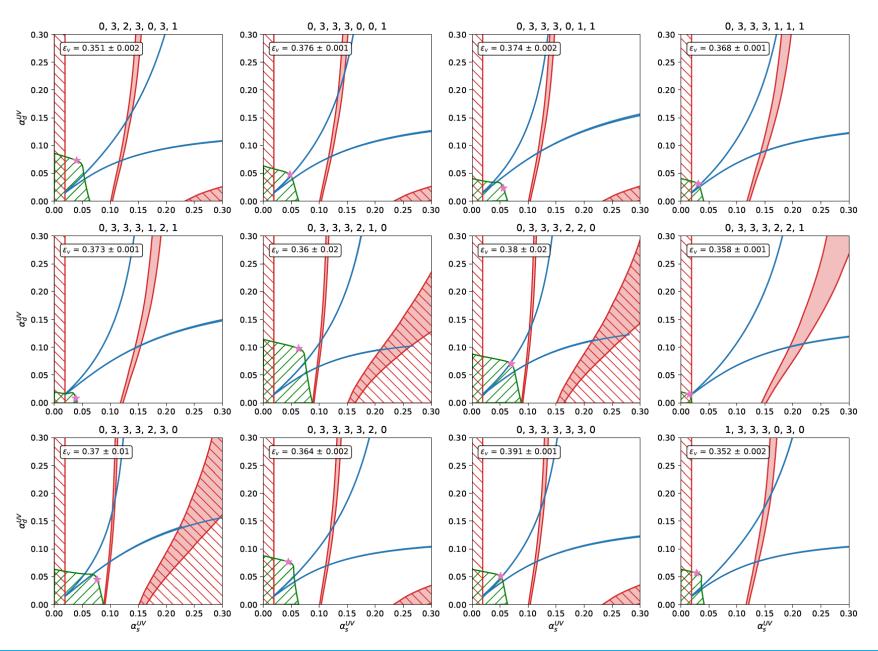
Results

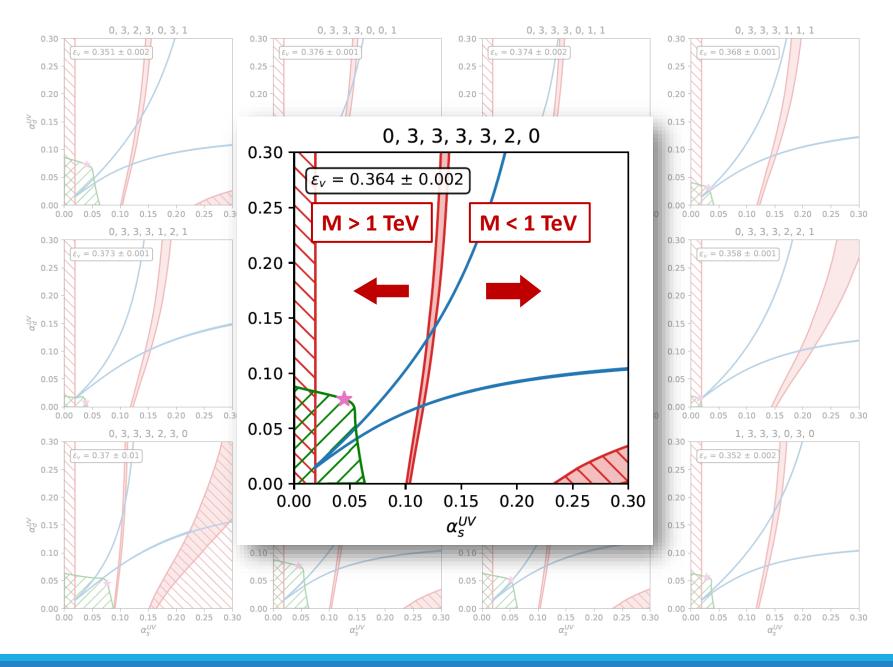
First looked at models with at most 3 of each new field

- **12,288** models
- 155 with a perturbative IRFP









Issue:

M < 1 TeV for much of the viable parameter space

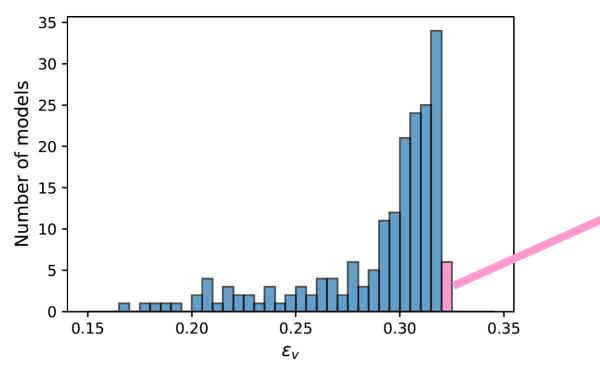
New sub-TeV coloured fields would be produced at colliders

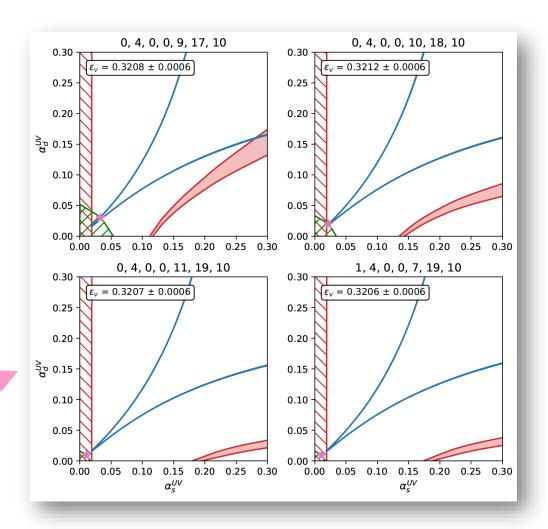
Looking for models with large M

Look at models with large $n_{{\scriptscriptstyle S}_i}$ (# of joint scalars)

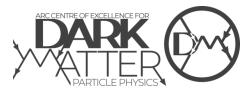
• Increases the magnitude of all beta-function coefficients

188 models with $n_{{\rm S}_j} > 10$ and one-loop beta-function coefficients between -0.1 and 0





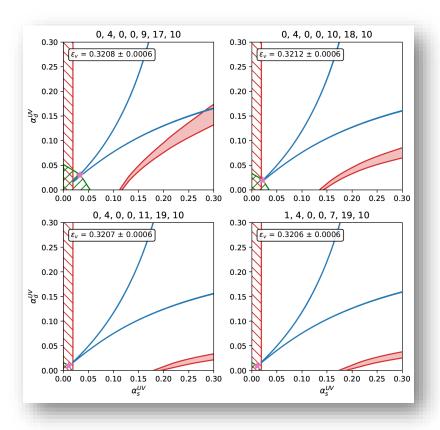
Conclusions



Cosmological coincidence inspires interesting model building

We've found a set of phenomenologically viable models that could naturally have $m_B \sim m_D$

Questions?



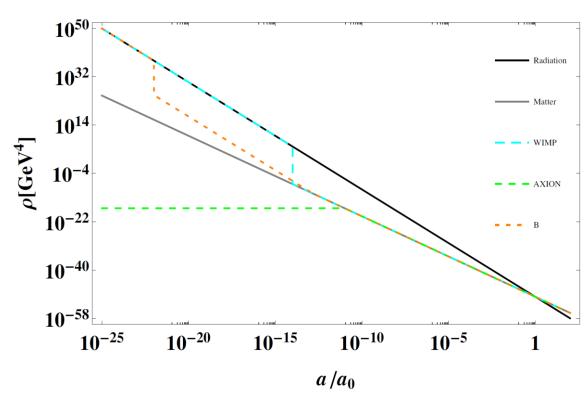
Backup Slides

Why is it a coincidence?

Unrelated mechanisms generate the mass density of visible baryons and most dark matter candidates

- Visible baryons: baryon-antibaryon asymmetry from baryogenesis
- WIMPs: thermal freeze-out
- Axions: misalignment mechanism

A priori we would not expect the dark and visible mass densities to be on the same order of magnitude



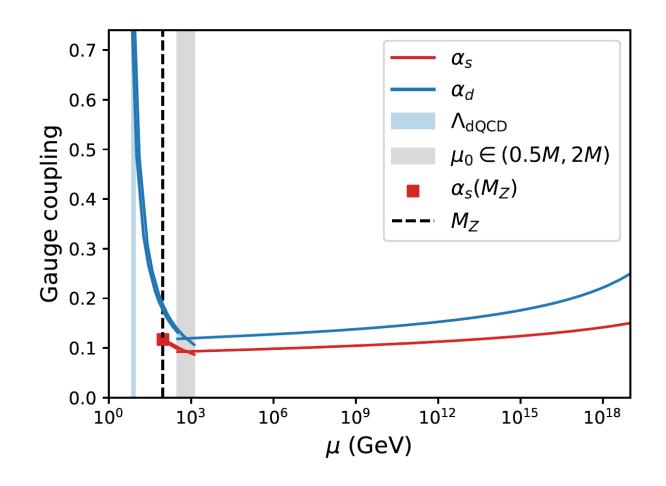
Stephen J. Lonsdale, Thesis (2018)

Threshold corrections

Heavy fields can still affect beta-functions at energies below their mass scale M

Need to apply threshold conditions at a decoupling scale $\mu_0 = \mathcal{O}(M)$

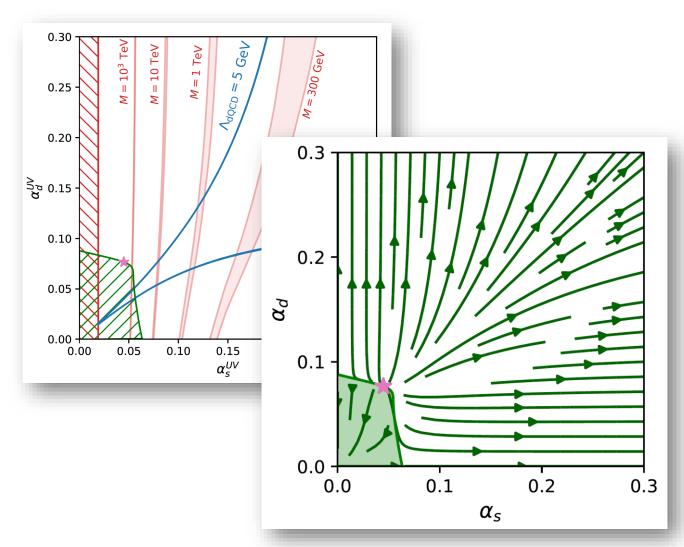
This introduces an uncertainty into M, Λ_{dOCD} for a given $\{\alpha_S^{UV},\alpha_d^{UV}\}$



Asymptotic Freedom

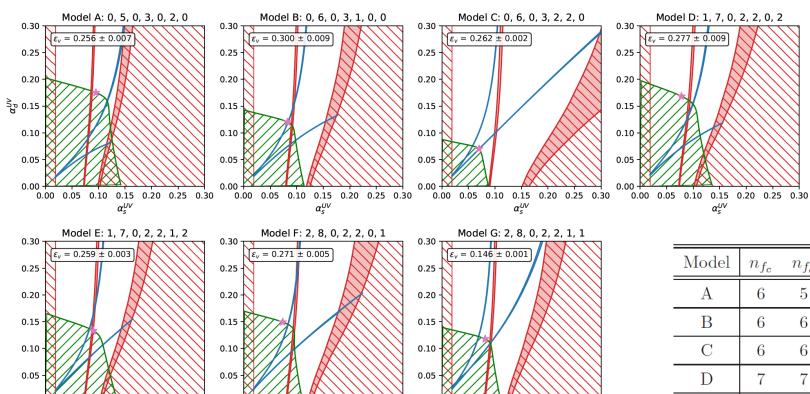
With coupled beta-functions, asymptotic freedom depends on the values of the gauge couplings

We only work with couplings that are perturbative below the Planck scale, so do consider non-asymptotically free regions



Bai-Schwaller results

0.00 0.05 0.10 0.15 0.20 0.25 0.30



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Model	n_{fc}	n_{f_d}	n_{f_j}	n_{s_c}	n_{s_d}	n_{s_j}	α_s^*	α_d^*
A	6	5	3	0	2	0	0.095	0.175
В	6	6	3	1	0	0	0.083	0.120
С	6	6	3	2	2	0	0.070	0.070
D	7	7	2	2	0	2	0.078	0.168
E	7	7	2	2	1	2	0.090	0.133
F	8	8	2	2	0	1	0.074	0.149
G	8	8	2	2	1	1	0.082	0.118