Sensítívíty of Dark Matter-Nucleus Interactíons To Nuclear Structure

2022 CDM Annual Workshop – ECR Talk

Raghda Abdel Khaleq

Searching for Dark Matter

Weakly Interacting Massive Particles (WIMPs)

Searching for Dark Matter

Dark Matter-Nucleus scattering

Theoretícal Model

Theoretícal Model

Nuclear Structure- Standard Characterísatíon

Early models use a simple picture

Nuclear Structure- Standard Characterísatíon

Early models use a simple picture

Need to consider motions of nucleons in nucleus!

New Interactions From Nucleon Motion

- A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, Journal of Cosmology and Astroparticle Physics (2013), ISSN 14757516.

- N. Anand, A. L. Fitzpatrick, and W. C. Haxton (2013), URL http://arxiv.org/abs/1308.6288

New Interactions From Nucleon Motion

- A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, Journal of Cosmology and Astroparticle Physics (2013), ISSN 14757516.

- N. Anand, A. L. Fitzpatrick, and W. C. Haxton (2013), URL http://arxiv.org/abs/1308.6288

Research Goal

Effect of nuclear structure: a neglected aspect

Investigate the sensitivity of Dark Matter-Nucleus scattering to nuclear structure

$$\frac{dR}{dE_R} \propto \int v \, d^3 v \, \sum_{ij} \sum_{N,N'=p,n} f_v(\vec{v}) \qquad R(\vec{v},q)_{ij}(N,N') \qquad F(q)_{ij}(N,N')$$

Differential scattering (interaction) rate

Form Factor -Nuclear Structure

Research Goal

Effect of nuclear structure: a neglected aspect

Investigate the sensitivity of Dark Matter-Nucleus scattering to nuclear structure

N,N'=p,n

$$\frac{dR}{dE_R} \propto \int v \, d^3 v \, \sum_{ij}$$

Differential scattering (interaction) rate

• Fit to different data sets

 $F(q)_{ij}^{(N,N')}$

Form Factor -Nuclear Structure

Nuclear Input in Form Factors

- Hold nuclear structure information
- Indicate scattering probability as function of momentum transfer q

Nuclear Input in Form Factors

- Hold nuclear structure information
- Indicate scattering probability as function of momentum transfer q

Integrated Form Factor (IFF)

$$\int_{0}^{100 MeV} \frac{q dq}{2} F_X^{(N,N)}(q^2),$$
 in

where
$$N = N' = p, n$$

units of

 $(MeV)^2$

The Setup – Nuclear Shell Model

Nucleons in orbits & shells within nucleus, move in effective potential.

The Setup – Nuclear Shell Model

Nucleons in orbits & shells within nucleus, move in effective potential.

The Setup – Nuclear Shell Model

Nuclear core – includes all filled levels & shells. Nuclear core wave function has spin-parity $J^P = 0^+$.

The Setup – Nuclear Shell Model

Nuclear core – includes all filled levels & shells. Nuclear core wave function has spin-parity $J^P = 0^+$.

The Setup – Nuclear Shell Model

Angular momentum, parity and overall nuclear wave function dictated by the valence nucleons – those outside the core.

Research Completed

Used NuShellX (nuclear shell model program) to calculate IFF values

				i	SD Model Space
				1	1d3/2,1d5/2,2s1/2 orbits
sd	sdba	b	k	1	* BONN A FROM Hjorth-Jensen, SEP 2000
sd	kuosd	b	е	1	RENORMALIZED KUO NPA103, 71 (1967)
sd	kuosdm	b	У	1	" " PLUS (A/18)**0.3 MASS DEPENDENCE
sd	bkuosd	b	k	1	BARE KUO NPA103, 71 (1967)
sd	pw	b	d	1	(PW) PREEDOM-WILDENTHAL PR C6, 1633 (1972)
sd	CW	b	С	1	(CW) CHUNG-WILDENTHAL A=17-28 INTERACTION
sd	cwh	b	h	1	(CW) CHUNG-WILDENTHAL A=28-39 INTERACTION
sd	kuosdh	b	g	1	K12.5P from Chung's thesis
sd	sdm	b	m	1	WILDENTHAL-MCGRORY MSDI (PRC4, 1708 (1971))
sd	W	b	W	1	(W) WILDENTHAL'S A=17-39 "USD" INT (JULY 1982)
sd	usda	b	а	1	Phys. Rev. C74, 034315 (2006)
sd	usdb	b	b	1	Phys. Rev. C74, 034315 (2006)
sd	hbusd	b	j	1	SDPOTA int from Ann. Phys. 182, 191 (1988)
sd	hbumsd	b	i	1	SDPOTB int from Ann. Phys. 182, 191 (1988)
sd	su3sd	b	S	1	SU3 INT - OCT 1990 VERSION
				1	
				I.	

For the nuclei/isotopes

¹⁹F, ²³Na,

^{28,29,30}Si, ⁴⁰Ar,

^{70,72,73,74,76}Ge, ¹²⁷I,

128,129,130,131,132,134,136*Xe*.

Integrated Form Factor Results

Integrated Form Factor Results

Integrated Form Factor Results

20% is a significant difference!

^{128,129,130,131,132,134,136}Xe Weighted by isotopic abundance

^{128,129,130,131,132,134,136}Xe Weighted by isotopic abundance

Dark Matter formalism sensitive to aspects of nuclear structure

Important Takeaway

To constrain Dark Matter Candidates via Direct Detection

Must account for nuclear structure modelling & uncertainties!

Important Takeaway

Nuclear Structure is Important!

.... Hire the nuclear physicists

Thank you for lísteníng!