

SABRE South NaI BiPo characterisation

Ferdos Dastgiri 22 November 2022

SABRE

- SABRE South part of SABRE international collaboration NaI dark matter detector
- ♦ Aim is to confirm or refute annual modulation claims by DAMA/LIBRA at LNGS, Italy
- Annual modulation is approximately 0.01 cpd/kg/keV, whereas the background is expected to be 1 cpd/kg/keV in the 1-6 keV region of interest
- Characterisation of intrinsic backgrounds ²³⁸U, ²³²Th, ²¹⁰Pb important
- Expected in the ppb levels
- SABRE focusing on development of ultra-pure NaI.

Cut-out view of a 3D rendering of SABRE. Credit: Michael Mews (The University of Melbourne)

NaI-035

- ♦ Set-up to measure backgrounds in LNGS, Italy
- Crystal encapsulated and wrapped in reflective material
- ♦ 2 x Hamamtsu 3" 11065 PMTs
- ♦ Two sets of runs since May 2022:
 - ♦ Low Gain
 - ♦ High Gain
- ♦ This work: Characterisation of ²³⁸U and ²³²Th in NaI-035

BiPo Decay

"Slow BiPo" $^{214}\text{Bi} \xrightarrow{\beta} ^{214}\text{Po} \xrightarrow{\alpha} ^{210}\text{Pb}$

"Fast BiPo" $^{212}\text{Bi} \stackrel{\beta}{\rightarrow} ^{212}\text{Po} \stackrel{\alpha}{\rightarrow} ^{208}\text{Pb}$

https://www.nachi.org/gallery/radon/thoron-decay-chain

Slow BiPo

- \Leftrightarrow Looking for β followed by an α with $t_{1/2} = 162 \mu s$
 - \diamond Digitiser recording window = 5 µs
 - ♦ Two events in quick succession
- NaI has pulse shape discrimination:
 - ♦ Different integrated charge deposit alphas more energy deposit
 - Different amplitude weighted mean times

Amplitude weighted mean time
$$\langle t \rangle_{600} = \frac{\sum\limits_{t_i < 600 \text{ ns}} h_i t_i}{\sum\limits_{t_i < 600 \text{ ns}} h_i}$$

Separation of β/α using Mean Time and Charge

- Plot MT vs Energy for summed channels
- \diamond Prepare cuts and separate β/γ and α

Calculate time difference

- ♦ Look out to events with $\Delta(t_{\alpha} t_{\beta}) < \Delta n\tau$
- Fit data to exponential decay with background
- $\Rightarrow PDF = N(1 + Re^{-\lambda t})$
 - N can be found by normalising the PDF
 - ♦ R ratio of decay component to the background.

Find Background Rate

- ♦ Look out to events with $\Delta(t_{\alpha} t_{\beta}) < \Delta n\tau$
- Fit data to exponential decay with background
- $\Rightarrow PDF = N(1 + Re^{-\lambda t})$
- ♦ R found calculating using a likelihood analysis $L_{max} = \prod(PDF_i)$

$$L_{max} = \Gamma(\Gamma D \Gamma_i)$$

$$L_{min} = -\sum log(PDF_i)$$

 Fit an exponential to the Δnτ data

Find Background Rate

- Digitiser collection window = 5μs
 - ♦ We could miss BiPo events in this window
 - \Leftrightarrow Fraction of missed events = 1 exp($-\lambda*5\mu s$) $\approx 2\%$

Find Background Rate

- \diamond Digitiser collection window = 5µs
 - ♦ We could miss BiPo events in this window
 - \Leftrightarrow Fraction of missed events = 1 exp($-\lambda*5\mu s$) $\approx 2\%$

Results

Data set	Duration (days)
Low Gain	~ 13
High Gain	~ 60
High Gain Period 1- 4	~ 12
High Gain Period 5	~ 9

NaI-033: $5.9 \pm 0.6 \,\mu\text{Bq/kg}$

Mass NaI-035 - 3.7 kg

Blob

- ♦ Region should not normally be present
- Present in High and Low Gain data

Analysis on Blob

- Can fit an exponential
- \diamond Can calculate $t_{1/2}$ that fits to this:
 - \Leftrightarrow 140 \pm 25 μ s
- Approximately 10.4 ± 0.9 μBq/kg
- \Leftrightarrow Compared to 3.7 ± 0.7 μ Bq/kg
- Working toward
 determining if this
 needs to be included in
 α

Fast BiPo

- \diamond Looking for β followed by an α with $\tau = 300$ ns
 - \diamond Digitiser recording window = 5 μ s
 - ♦ Look in one trigger

Fast BiPo

- Set Alpha trigger threshold
 - \Leftrightarrow Set a minimum Δt
 - ♦ Requires some experimentation
- \Leftrightarrow Identified 26 events 1.4 ± 0.2 µBq/kg
- \bullet NaI-033: 1.6 ± 0.2 µBq/kg

Issues

- \diamond This leaves open to missing events, where the β peak is larger than the α threshold
- ♦ ∆t currently set arbitrarily and could result in missed events
- ♦ Once we have good number, we can do a similar analysis to slow BiPo
- Must look through many waveforms.

Future Work

- \Leftrightarrow Before getting custom algorithm, we can explore lowering (negative) the α threshold to the ²¹²Bi β energy
- ♦ Fit exponential to ∆t and do analysis similar to slow BiPo
- Compare to Low Gain

Conclusion

- ♦ Developed a method to identify and analyse BiPo in the ²³⁸U decay
- Determine if Blob should be included in α
- ♦ Developed the basic analysis and method to identify BiPo in the ²³²Th decay
 - ♦ Needs algorithm improvements

Fast BiPo

- ♦ Set Alpha trigger threshold
 - ♦ Requires some experimentation
- ♦ Identified 26 events

Blob Included Analysis

 \diamond The following Δt distribution is for the blob included in the overall analysis.

