

AN INTRODUCTION TO DARK MATTER DIRECT DETECTION METHODS

THERESA FRUTH UNIVERSITY OF SYDNEY CDM ECR WORKSHOP 21 NOV 2022

DIRECT DETECTION BASICS

$$\frac{d\sigma(E_{\rm nr})}{dE_{\rm nr}} = \frac{m_N}{2v^2\mu^2} \left[\sigma_{\rm SI} F_{\rm SI}^2(E_{\rm nr}) + \sigma_{\rm SD} F_{\rm SD}^2(E_{\rm nr}) \right]$$

Spin-independent

$$\sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{(f_p Z + f_n (A - Z))^2}{f_n^2} = \sigma_n \frac{\mu^2}{\mu_n^2} A^2$$

Favours heavy targe nuclei (i.e. large A)

Spin-dependent
$$\frac{d\sigma_{\rm SD}}{d|\vec{q}|^2} = \frac{8G_F^2}{\pi v^2} \left[a_p \langle S_p \rangle + a_n \langle S_n \rangle\right]^2 \frac{J+1}{J} \frac{S(|\vec{q}|)}{S(0)}$$

Nuclei with unpaired neutron or proton

EXPERIMENTAL CHALLENGES

- Nuclear recoils due to dark matter interactions are expected to be:
 - Very rare
 - Low energy
- We need:
 - Target material sensitive to the interaction
 - Technology to detect interaction
 - Understand and reduce backgrounds
 - Calibrate detector response
 - Analysis techniques

Ionization & excitation

Ionization & excitation

9

Signal quenching:

Nuclear recoils "lose" more energy to atomic motion than electron recoils. This is accounted for by the quenching factor Q.

 $E_{ee}[keV_{ee}] = Q(E_{nr}) \times E_{nr}[keV_{nr}]$

https://arxiv.org/pdf/2104.07634.pdf

https://arxiv.org/pdf/2104.07634.pdf

https://arxiv.org/pdf/2104.07634.pdf

ASIDE: ELECTRON RECOIL SIGNALS

There are some searches making use of electron recoils:

Nuclear recoil followed by electron recoil

- Inelastic DM scattering: NR is followed by ER from de-excitation of DM particle of target nucleus
- Migdal effect: Additional excitation & ionization due to electron cloud following recoiling nucleus with delay
- Bremsstrahlung: Bremsstrahlung follows an undetected nuclear recoil

DM-electron scattering:

Light (MeV) dark matter particles don't have enough momentum to create NR signals

BACKGROUNDS

Understand background sources.

Reduce backgrounds.

Distinguish signal from background topologies.

Radioactive isotopes

Radon

Neutrinos

- Radioactive isotopes in the environment and the detector itself:
 - Radioactive decays:
 - Gamma: environment & detector materials
 - Beta: from bulk and surfaces
 - (α, n) and spontaneous fission

Cosmic rays:

muon induced neutrons

NR

ER

 10^{3}

hep

 10^{1}

Neutrino energy [MeV]

Atmospheric

 10^{2}

DSNB

 10^{0}

 10^{2}

 10^{-1}

 10^{-4}

 10^{-1}

- measured, predictions from simulations)
- Diffuse supernovae neutrino background
- Neutrino-electron scattering => ER band
- CEVNS => NR band

BACKGROUNDS

Understand background sources.

Reduce backgrounds.

Distinguish signal from background topologies.

Shielding

Material screening & cleanliness

Veto detectors

- Deep underground laboratories
 - Reduces muon flux (and muon-induced neutrons)
- Water tank & additional shielding
 - Lead-shielding
 - Gamma shielding
 - Neutron absorption & moderation
- Self-shielding/fiducialisation
 - Backgrounds from surfaces and detector materials likely to interact towards the outside of the detector

Shielding

Material screening & cleanliness

Veto detectors

- Purification:
 - Reduce impurities and radioactivity in target material
 - For crystals before and during crystal making
 - For gas and liquid detectors online purification
- Material selection: Dedicated screening campaigns to select radio-pure detector materials
 - Gamma-screening
 - ICPMS
 - Rn emanation
- Cleanliness:
 - Ensure minimal depositions on detector surfaces during construction

Shielding

Material screening & cleanliness

Veto detectors

- Veto interactions which interact multiple times within the detector
- Dedicated veto detectors for
 - Gammas
 - Neutrons
 - Muons

BACKGROUNDS

Understand background sources.

Reduce backgrounds.

Distinguish signal from background topologies.

Annual modulation

EDELWEISS III https://arxiv.org/pdf/1706.01070.pdf

Directionality

ER-NR discrimination

- Difference in interaction between electron recoil and nuclear recoil leads to different ratio in signals
 - Cryogenic bolometers with 2 readout channels are superior here
 - Also possible for LXe/LAr detectors but less efficient
- Pulse-shape discrimination

ENERGY RECONSTRUCTION

ENERGY RECONSTRUCTION

Observed quanta

We need to understand:

- Detector efficiencies:
 - Sensor efficiencies
 - Light collection efficiency, electron extraction efficiency, etc.
- Scattering process in target material
 - Signal yields
 - Quenching factor

External neutron sources:

- Spontaneous fission (e.g. ²⁵²Cf)
- Alpha decay + light isotope via (α, n)
 (e.g. AmLi)
- Photoneutron sources: Be target + γ source to produce nearly mono-energetic neutrons via the two-body reaction
 ⁹Be(γ,n)
- DD and DT neutron generators
 - e.g. ²H + ²H -> n + ³H

Nuclear recoil

Electron recoil

- Intrinsically present radioactive isotopes or activation products from neutron calibrations
- Internal sources (liquid and gas detectors)
 - inject short lived radio-isotopes (need to be long-lived enough to distribute in the detector volume)
 - inject long-lived radio-isotopes which can be removed by purification
- External sources (gamma sources)

LUX-ZEPLIN

TYPICAL ANALYSIS OVERVIEW

DIRECT DETECTION FRONTIERS

Shengchao Li, SNOWMASS CF1 Convener's Report

Exposure frontier

LXe and LAr detectors:

Advantage:

- Established detector design
- Large target mass with self-shielding

Challenges:

- High voltages
- Rn!
- Accidental coincidences

Shengchao Li, SNOWMASS CF1 Convener's Report

4

Exposure frontier

Low mass frontier

Neutrino fog frontier

Nal frontier

Cryogenic bolometers:

Advantage:

- eV_{nr} and eV_{er} thresholds and energy resolutions
- Two channel readout leads to excellent discrimination

Challenges:

- Small detector volumes needs many modules
- Low energy excess observed in current experiments

https://arxiv.org/pdf/2104.07634.pdf

https://arxiv.org/pdf/2104.07634.pdf

Nal frontier Exposure frontier Neutrino fog frontier Low mass frontier 10^{-39} 10^{-40} **Ionization detectors: EDELWEISS** 10^{-41} NEWS-G CRESST T-REX - DAMIC-M Advantage: 10⁻⁴² SuperCDMS (Si) Cross Section [cm²] 10⁻⁴³ SuperCDMS (Ge) Very low E threshold (0.1 keV_{ee}) CYGNUS Si CCDs: 3D position 10^{-44} Current Lim reconstruction and effective 10^{-45} v-floor particle ID Argon Germanium 10^{-46} Xenon --- CaWO Challenges: 10^{-47} Getting to large target 10^{-48} DARWIN volumes/exposures is difficult 10^{-49} 10^{-50} TITIT 0.30.5 10^{4} 0.1 3 10 30 50 100 300 1000 3000 1 5 14 WIMP mass $[GeV/c^2]$

۲

.

https://arxiv.org/pdf/2104.07634.pdf

Exposure frontier

Low mass frontier

Neutrino fog frontier

Nal frontier

Directional detectors:

Advantage:

- Distinguish between neutrinos and dark matter candidate events
- Different gas mixtures -> sensitivity to spindependent etc.

Challenges:

- E threshold in 10s of keV_{ee} typically
- Challenging to reconstruct tracks
- Scaling up is difficult (low density gas, but finegrained sensors)

Ciaran O'Hare, Phys. Rev. Lett. 127, 251802 (2021)

Ciaran O'Hare, Phys. Rev. Lett. 127, 251802 (2021)

Exposure frontier

Neutrino fog frontier

Nal frontier

Nal scintillation detectors:

Advantage:

- Can operate stably for a very long time
- Opportunity to test the DAMA /LIBRA claim

Challenges:

 Intrinsic backgrounds in the crystal need to be reduced

https://darkmatteraustralia.atlassian.net/wiki/spaces/SABREPUBLIC/pages/1446117400/Modulation+Rate

- [1] Bernabei et al. PPNP114 103810 (2020)
- [2] Adhikari et al. arxiv:2111.08863
- [3] Amare et al. PRD 103, 102005 (2021)

Modulation rate (cpd/kg/keV)

https://darkmatteraustralia.atlassian.net/wiki/spaces/SABREPUBLIC/pages/1446117400/Modulation+Rate

[1] Bernabei et al. PPNP114 103810 (2020)

[2] Adhikari et al. arxiv:2111.08863

[3] Amare et al. PRD 103, 102005 (2021)

49

SUMMARY

Many different methods for particle dark matter direct detection searches

- Different methods are complimentary and have different strengths
- Exciting new experiments coming online

