Constraints on the dark photon from deep inelastic scattering

Xuan-Gong Wang

The University of Adelaide

In Collaboration with A. W. Thomas and A. G. Williams

CDM Annual Workshop, Nov. 29 - Dec. 1, 2021

- Dark photon hypothesis
- $e^{\pm}p$ deep inelastic scattering (DIS) with dark photon
- Our work of constraints on the dark photon
- Summary

4 E b

Part I: Dark photon hypothesis

-

• WIMPs are still attracting much efforts:

- XENON: Aprile et al., Eur. Phys. J. C 77, 881 (2017)
- ANAIS: Amare et al., Phys. Rev. D 103, 02005 (2021)
- SABRE: Antonello et al., Astropart. Phys. 106, 1 (2019)
- COSINE-100: Adhikarj et al., arXiv: 2104.0537
- Stringent limits from null experiments have motivated alternative DM hypothesis
- Dark photon: a portal between DM and ordinary particles Fabbrichesi, Gabrielli, Lanfranchi, arXiv: 2005.01515

The dark photon was proposed as an extra U(1) gauge boson, interacting with SM particles through kinetic mixing with hypercharge Okun, Sov. Phys. JETP 56, 502 (1982)

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{\bar{m}^2_{A'}}{2} A'_{\mu} A'^{\mu} + \frac{\epsilon}{2 \cos \theta_W} F'_{\mu\nu} B^{\mu\nu} \,. \tag{1}$$

where θ_W is the Weinberg angle, $F'_{\mu\nu}$ is the dark photon strength tensor and ϵ is the mixing parameter

$A' \rightarrow \mu^+ \mu^-$:

- LHCb Collaboration Aaij *et al.*, Phys. Rev. Lett. 124, 041801 (2020)
- CMS Collabortaion Sirunyan *et al.*, Phys. Rev. Lett. 124, 131802 (2020)

 $A' \to \chi \bar{\chi}$:

- NA64 Experiment: $1 \text{ MeV} \le \overline{m}_{A'} \le 250 \text{ MeV}$ Banerjee *et al.*, Phys. Rev. Lett. 123, 121801 (2019)
- BaBar Collaboration: 250 MeV $\leq \bar{m}_{A'} \leq 8 \text{ GeV}$ Lees *et al.*, Phys. Rev. Lett. 119, 131804 (2017) $\Rightarrow \epsilon \leq \mathcal{O}(10^{-3})$

It could be weakened by taking into account the detailed structure of the dark sector Essig, Schuster, Toro, Phys. Rev. D 80, 015003 (2009)

Figure: The strongest limits on ϵ from energy missing events. This figure is taken from Fabbrichesi, Gabrielli, Lanfranchi, arXiv: 2005.01515 [hep-ph]

Independent on its production mechanism and decay modes:

- muon g − 2

 → dark photon mediated loop contribution negligible for m_{AD} ≥ 10 GeV
 Pospelov, Phys. Rev. D 80, 095002(2009)
- Electroweak precision observables (EWPO) $\rightarrow Z$ boson mass shift relative to $m_W/\cos\theta_W$ Curtin, Essig, Gori, Shelton, JHEP 02, 157 (2015)
- e[±]p deep inelastic scattering (DIS) Kribs, McKeen, Raj, Phys. Rev. Lett. 126, 011801 (2021)

Figure: Existing limits on ϵ from decay-agnostic processes. This figure is taken from Kribs, McKeen, Raj, Phys. Rev. Lett. 126, 011801 (2021)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Part II: $e^{\pm}p$ deep inelastic scattering with dark photon

Kribs, McKeen, Raj, Phys. Rev. Lett. 126, 011801 (2021)

- Broad kinematic coverage:
 - $0.15 \leq Q^2/{\rm GeV}^2 \leq 10^6$ (even higher) $5\times 10^{-6} \leq x \leq 0.8$

$$\Rightarrow 100~{\rm MeV} \le m_{A_D} \le 100~{\rm TeV}$$

 The dark photon contribution to the proton structure function has non-DGLAP feature → smoking gun

By including the dark photon contributions, the transverse structure function of the proton is

$$\tilde{F}_2 = \sum_{i,j=\gamma,Z,A_D} \kappa_i \kappa_j F_2^{ij}, \qquad (2)$$

where $\kappa_i = Q^2/(Q^2 + M_{V_i}^2)$. At leading order (LO) in α_s

$$F_{2}^{ij} = \sum_{q} x f_{q} \left(C_{i,e}^{v} C_{j,e}^{v} + C_{i,e}^{a} C_{j,e}^{a} \right) \left(C_{i,q}^{v} C_{j,q}^{v} + C_{i,q}^{a} C_{j,q}^{a} \right),$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
PDFs couplings to electron couplings to quarks

After diagonalizing the mixing term through field redefinitions, the couplings of the physical Z and A_D to SM particles are given by

$$C_{Z}^{\nu} = (\cos \alpha - \epsilon_{W} \sin \alpha) \bar{C}_{Z}^{\nu} + \epsilon_{W} \sin \alpha \cot \theta_{W} C_{\gamma}^{\nu},$$

$$C_{Z}^{a} = (\cos \alpha - \epsilon_{W} \sin \alpha) \bar{C}_{Z}^{a}$$
(3)

and

$$C_{A_D}^{\nu} = -(\sin \alpha + \epsilon_W \cos \alpha) \bar{C}_Z^{\nu} + \epsilon_W \cos \alpha \cot \theta_W C_{\gamma}^{\nu},$$

$$C_{A_D}^{a} = -(\sin \alpha + \epsilon_W \cos \alpha) \bar{C}_Z^{a}.$$
(4)

where \bar{C}_{Z}^{ν} , \bar{C}_{Z}^{a} , C_{γ}^{ν} are the SM coulings

$$lpha$$
 is the $ar{Z} - A'$ mixing angle
 $\tan lpha = rac{1}{2\epsilon_W} \Big[1 - \epsilon_W^2 -
ho^2 - ext{sign}(1 -
ho^2) \sqrt{4\epsilon_W^2 + (1 - \epsilon_W^2 -
ho^2)^2} \Big],$

with

$$W = \frac{\epsilon \tan \theta_W}{\sqrt{1 - \epsilon^2 / \cos^2 \theta_W}},$$

$$\rho = \frac{\bar{m}_{A'} / \bar{m}_{\bar{Z}}}{\sqrt{1 - \epsilon^2 / \cos^2 \theta_W}}.$$
(5)

 ϵ

<ロ> <同> <同> < 同> < 同>

æ

Kribs, McKeen, Raj, Phys. Rev. Lett. 126, 011801 (2021):

- only perturbative contributions, \tilde{F}_2
- fix PDFs from the best fit results of HERA analysis without dark photon

Our work:

- two-component model: Vector Meson Dominance $\gamma \rightarrow (q\bar{q})$ photo-production limit $F_2 \propto Q^2$ as $Q \rightarrow 0$
- simultaneous determination of PDFs and dark photon parameters

Part III: Our work

Thomas, Wang, Williams, arXiv: 2111.05664 [hep-ph]

We embed the perturbative contributions to a two-component model, Martin, Ryskin, Stasto, Eur. Phys. J. C 7, 643 (1999)

$$F_2(x,Q^2) = F_2^{\text{VMD}}(x,Q^2) + \frac{Q^2}{Q^2 + M_0^2} \tilde{F}_2(\bar{x},Q^2 + M_0^2), \quad (6)$$

where

$$\bar{x} = x \frac{Q^2 + M_0^2}{Q^2 + x M_0^2}, \tag{7}$$

with M_0^2 being in the range $1.0 - 1.5 \text{ GeV}^2$.

The VMD term has the form Szczurek, Uleshchenko, Eur. Phys. J. C 12, 633 (2000)

$$F_2^{\rm VMD} = \frac{Q^2}{\pi} \sum_{V=\rho,\omega,\phi} \frac{M_V^4 \sigma_{VN}}{f_V^2 (Q^2 + M_V^2)^2} \Omega(x, Q^2),$$
(8)

In phenomenological analysis, a Gaussian form factor is often introduced

$$\Omega(x, Q^2) = \exp(-(\Delta E/\lambda_G)^2), \qquad (9)$$

where

$$\Delta E = \frac{M_V^2 + Q^2}{Q^2} M_N x \,. \tag{10}$$

with $1/\Delta E$ characterizing the lifetime of the hadronic fluctuations of the photon.

Initial PDFs

We adopt the leading order (LO) HERA parametrization of the PDFs at an initial scale, $Q_0^2 = 1.9 \text{ GeV}^2$, Abramowicz *et al.*, Eur. Phys. J. C 75, 580 (2015)

$$\begin{aligned} xg(x, Q_0^2) &= A_g x^{B_{\bar{g}}} (1-x)^{C_{\bar{g}}}, \\ xu_v(x, Q_0^2) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} [1+E_{u_v} x^2], \\ xd_v(x, Q_0^2) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{u}(x, Q_0^2) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}} [1+D_{\bar{u}} x], \\ x\bar{d}(x, Q_0^2) &= (1-0.4) A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}, \\ x\bar{s}(x, Q_0^2) &= 0.4 A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}. \end{aligned}$$
(11)

The PDFs at DIS scale Q^2 are obtained by DGLAP evolution.

- DIS only fit
 - F_2 is insensitive to the *d*-quark distributions
 - \rightarrow We fix xd_v and $x\overline{d}$ from HERA analysis
 - ightarrow 7 free parameters in PDFs
- Limited data set HERA: $Q^2 \in [3.5, 30000] \text{ GeV}^2$, BCDMS: $Q^2 \in [7.5, 230] \text{ GeV}^2$
- Our work should be view as exploratory, aiming at investigating whether a full scale search based on this approach would be justified

Without dark photon

	w	ithout VN	ЛD	with VMD ($\lambda_{\mathcal{G}} = 0.897~{ m GeV}$)			
	xg	хи _v	хū	xg	хи _v	×ū	
A	5.3368	4.4790	0.0894	4.9008	4.4531	0.0904	
В	0.0745	0.7441	-0.3020	0.0659	0.7419	-0.3255	
С	9.4590	3.9314		8.9941	4.1885		
D							
E		4.8071		6.6852			
χ^2	195.59	+151.34=	=346.93	180.10+111.69= 291.79			
$\langle xq^+ \rangle$	0.4320	0.3	8575	0.4277	0.	.3620	

Table: Refit to HERA and BCDMS data with $Q^2 \in [3.5, 30000] \text{ GeV}^2$, $N_{\text{data}} = 158 + 101 = 259$. The individual contributions to the total χ^2 correspond to HERA and BCDMS sets, respectively. The parameters A for xu_v and xg are fixed by number and momentum sum rules, respectively.

	$\Delta \chi^2$	= 1 (68%	6 CL)	$\Delta \chi^2 = 2 (95\% \text{ CL})$						
(M_{AD}, ϵ)	(5.0, <mark>0.0205</mark>)			(5.0, <mark>0.0286</mark>)						
	xg	хи _v	хū	xg	хи _v	хū				
A	4.8556	4.4424	0.0901	4.8121	4.4322	0.0898				
В	0.0638	0.7411	-0.3258	0.0617	0.7403	-0.3261				
С	8.9561	4.1894		8.9198	4.1903					
D										
E	6.7063			6.7263						
χ^2	180.97 +111.82=292.79			181.83+111.96=293.79						
$\langle xq^+ \rangle$	0.4280 0.3617		0.4282	0.3	614					

Table: Fit results by including the dark photon with $\Delta \chi^2 = 1$ and $\Delta \chi^2 = 2$ in respect to the best fit results without dark photon. We take the dark photon mass $m_{A_D} = 5 \text{ GeV}$ as an example.

Exclusion constraints

Figure: The exclusion limits on the mixing parameter ϵ . The region in grey is not accessible due to the "eigenmass repulsion" associated with the *Z* mass.

- weaker than the result in Kribs, McKeen, Raj, Phys. Rev. Lett. 126, 011801 (2021)
- compatible with the EWPO limits for $m_{A_D} \leq 20 \ {
 m GeV}$
- the upper bounds on ϵ increase slightly when m_{A_D} moves down to 1 GeV

- We investigate the dark photon properties in analysis of DIS data
- VMD and correct photo-production limit are incorporated in a two-component model of the proton structure function
- By allowing variations in PDFs, we extract the exclusion limits on ϵ with 68% and 95% CL, which are competitive with the EPWO determination for $m_{A_D} \leq 20$ GeV.
- More accurate constraints could be obtained from global fit analysis beyond leading order.

Thanks!

INTERNATIONAL PARTNER ORGANISATIONS:

<ロ> <同> <同> < 同> < 同>

3