

Update on the SABRE South Experiment

Gary C. Hill University of Adelaide for the SABRE South Collaboration

~~

20

Motivation: Annual Modulation & DAMA/LIBRA

6.05

Unique model independent signal for dark matter caused by relative motion of the earth through galactic

DAMA has a 20-year record of the modulation in the 2-6 keV energy range with combined significance of 12.9 σ R. Bernabei, et al. "First model independent results from DAMA/LIBRAphase2." Universe 4.11 (2018): 116.

Modulating Signal signatures:

- Period of one year
- Peaks on June 2nd $t_v = 152.5 \ days$
- $S_m/R_0 \approx 0.01 0.03$

Recent modulation results

ANAIS

314 kg x yr exposure with no evidence of DAMA/LIBRA modulation at $\approx 3 \sigma$ significance

COSINE-100

97.7 kg x yr exposure compatible with the DAMA/LIBRA result

G. Adhikari, et al. "Search for a dark matter-induced annual modulation signal in Nal (TI) with the COSINE-100 experiment." *Physical review letters* 123.3 (2019): 031302.

Current results inconclusive. Southern Hemisphere detector with similar sensitivity to DAMA important for replication effort

Stawell Underground Physics Laboratory

1 00E-06

1.00E-07

1.00E-08

1.00E-09

1.00E-10

Melbourne

Located in active gold mine – Stawell Gold Mine in Victoria, 240 km North West of Melbourne.

Lab is 1024 m below ground with flat over burden. Access via Helical shaft from surface.

PHYSICS LAB

Main cavern operated as radon suppressed clean room.

SABRE South Collaboration

46 Members across 5 institutions

Australian National University Australian Nuclear Science and Technology Organisation Swinburne University of Technology The University of Adelaide The University of Melbourne

SABRE Organisation

Speakers Committee		SUPL Liaison
Chair: Michaela Froelich		Geoffrey Taylor
	Management	
Publications Committee	Spokesperson: Elisabetta Barberio	Financial Board
Chair: Gary Hill	Technical Coordinator: Phillip Urquijo	Chair: Andrew Stuchbery
Outreach and Inclusion		Safety
Chairs: P. McGee, V. Zhong		Chair: Geoffrey Brooks
Chans. F. McGee, T. Zhong		

Physics	Software & Offline	Trigger and DAQ	Veto Systems	NaI(Tl)	Engineering and slow
Convenor: Francesco Nuti	Computing Convenor: Federico Scutti	Convenor: Matthew Gerathy	Convenor: Lindsey Bignell	Convenor: Zuzana Slavkovska	control Convenor: Tiziano Baroncelli

SABRE South in SUPL

7

ToF Muon System 9.6 m² x 5 cm EJ200

R13089 PMT x 16 @ 3.2 GS/s

• Veto System

12k litres Linear Alkyl Benzene + PPO & Bis-MSB Stainless steel, non-thoriated welds, lumirror coating **Oil-proof base R5912 PMT x 18 @ 500 MS/s**

- DM Target Detector
 Nal(TI) Crystals
 R11065 low radioactivity PMT x ~14 @ 500 MS/s
- Key requirement to understand modulation in background contributions requires particle ID. e.g. $\mu/\gamma/n$.

Cavern walls:

- Pinned with steel
- Sprayed w. low radioactivity "shotcrete"
- Coated with Tekflex

Cavern excavated in June.

All construction materials are being screened for radioactivity with NaI(TI) counting.

Ontrack for construction completion December 2021. SABRE South construction and commissioning in early 2022.

Post construction background measurements:

- Muons muon veto panels in telescope orientation
- Gamma spectrometer
- Neutrons series of Bonner spheres & ³He detector

Nal(TI) Detectors

Array of 7 Nal(TI) detectors immersed in the liquid veto. Minimal material between crystal and liquid scintillator. Purged with high purity dry N₂.

Crystal Insertion System

• Three procedures for CIS: insertion, extraction, substitution of crystals.

GB built by Palazzi SRL (Italy). CIS Crain at UniMelb.

SABRE

Low Background Nal(TI)

1. The SABRE Collaboration has successfully grown very low background NaI(TI) crystals ^[1].

For more details see A. Mariani "Characterisation of an ultra-high purity NaI(TI) crystal scintillator with the SABRE Proof-of-Principle detector"

2. SABRE South test crystal (new) – 5 kg grown by RMD using Bridgman-Stockbarger process developed with SABRE.
ICPMS measured K: tip 5 ppb, bulk <10 ppb.
Currently being prepared for counting at LNGS.

	K [ppb]	²³⁸ U [ppt]	²³² Th [ppt]
SABRE ^[1] Nal-33	4.7±1.4	<1	<1
DAMA ^[2]	13	<10	<10
COSINE-100 [3]	17.8	<20	0.6

Ongoing: AMS measurements of ²¹⁰Pb content in Astro-Grade NaI powder at ANU

[1] – M. Antonello, et al.," Characterization of SABRE crystal NaI-33 with direct underground counting." Eur. Phys. J. C 81, 299 (2021)

[2] - R. Bernabei, et al. "The DAMA/LIBRA apparatus." Nucl. Instrum. Methods Phys. Res. A: 592.3 (2008): 297-315.

[3] – G. Adhikari, et al. "Initial performance of the COSINE-100 experiment." The European Physical Journal C 78.2 (2018): 1-19.

Low Background Nal(TI)

1. The SABRE Collaboration has successfully grown very low background NaI(TI) crystals ^[1].

For more details see A. Mariani "Characterisation of an ultra-high purity NaI(TI) crystal scintillator with the SABRE Proof-of-Principle detector"

2. SABRE South test crystal (new) – 5 kg grown by RMD using Bridgman-Stockbarger process developed with SABRE.
ICPMS measured K: tip 5 ppb, bulk <10 ppb.
Currently being prepared for counting at LNGS.

10pl	Transferra	Q.YC-812-1	1
BC.	-	-	
191	1 The		
	and the second second		2
Same La			

	K [ppb]	²³⁸ U
SABRE ^[1] Nal-33	4.7±1.4	<1
DAMA ^[2]	13	<10
COSINE-100 ^[3]	17.8	<20

In discussion with SICCAS on their capabilities:
 they are preparing to grow the largest Nal crystal they can
 they have ability to grow all crystals simultaneously
 We aim to measure the background and light yield of a SICCAS crystal at SUPL in the new year

Ongoing: AMS measurements of ²¹⁰Pb content in Astro-Grade Nal powder at ANU

[1] – M. Antonello, et al.," Characterization of SABRE crystal Nal-33 with direct underground counting." Eur. Phys. J. C 81, 299 (2021)

[2] – R. Bernabei, et al. "The DAMA/LIBRA apparatus." Nucl. Instrum. Methods Phys. Res. A: 592.3 (2008): 297-315.

[3] – G. Adhikari, et al. "Initial performance of the COSINE-100 experiment." The European Physical Journal C 78.2 (2018): 1-19.

PMTs

R11065 Crystal PMTs 3" head-on Metal body Low radioactivity High quantum efficiency (QE>30% requirement)

For 1keV threshold in Nal(TI) detectors require

	QE	Gain	Dark Rate @ 0.3*Single-photo- electron Peak
R11065 – crystal	> 30%	10 ⁷	<1000 Hz
R5912 – veto	~ 25%	10 ⁷	<2000 Hz

- Measurement of all PMTs:
 - Quantum Efficiencies, photocathode surface scans, Dark current and dark rate (ML suppression algorithm training), Gain, Temperature dependence, spontaneous light emission in bases, after-pulses, transit time spread.
 - Testing facility at UniMelb.

R11065 delivered to UniMelb. R5912 in production. µ System PMTs installed.

- Picosecond pulsed light source, W-Halogen lamps + grating, reference PD, thermal chamber, trigger PMTs, CAEN readout.
- Parallel studies

•

- HV Polarity and pre-amplification and early dynode readout for dynamic range, location of splitters, cable noise studies.
- Noise rejection tools & ER/NR classifiers.

+ µ System PMTs

R5912 Veto PMTs

8" hand blown glass body

Large acceptance Oil-proof base (Resin filled

Acrylic)

SABRE

Active Veto System

Veto system provides 4π coverage

Liquid veto:

- 12,000 L of Linear Alkyl-Benzene (LAB) doped with PPO and Bis-MSB
- 18 Hamamatsu R5912 PMTs with oil-proof base. Readout at 500 MS/s (CAEN V1730)

The active veto is designed to:

- Veto potassium-40 decays in NaI(TI) with 85% efficiency.
- Be sensitive to >100 keV energy deposition
 This reduces the background by a factor of 10.

17,000 litres LAB scintillator base from Nanjing via JUNO/IHEP.

JUNO LS properties [6]

- Photon attenuation > 20 m
- ²³⁸U/²³²Th/⁴⁰K <10⁻¹⁷ g/g

[6] – A. Abusleme, et al. "JUNO Physics and Detector." *arXiv:2104.02565* (2021).

Calibration systems

- Source based system designed for NaI(TI) and LAB detectors.
 - Calibration method has been simulated.
- Optical system under design.
- Based on picosecond laser, optical fibre, diffuser. Similar to that used in UniMelb test-bench.

Muon Veto System

20

Provides additional tagging of cosmic muons.

Required for measurements of muon modulation at SUPL (in combination with the veto vessel)

8 x EJ200 organic scintillator panels (3x0.4x0.05 m) with PMTs at opposite ends.

Readout at 3.2 GS/s which gives longitudinal position resolution of 5 cm.

Data acquisition & Online Computing

SABRE

Projected sensitivity

SABRE South sensitivity has been estimated by Zurowski & Barberio $[4 \overset{\frown}{\underline{b}}]^{10}$ With 50 kg NaI(TI)& projected background rate ~0.36 cpd/kg/keV [5]

For DAMA like signal:

- 5σ Discovery power in 2 years
- 5σ Exclusion within 5 years

SI - 90% C.L. Modulation Sensitivity 3 Yr exposure

[4] – M. J. Zurowski, and E. Barberio. "Influence of Nal background and mass on testing the DAMA modulation." arXiv:2107.07674
[5] - M. Antonello, et al. "Monte Carlo simulation of the SABRE PoP background." *Astroparticle Physics* 106 (2019): 1-9.

SABRE South will be commissioned in 2022 in SUPL. Expected to reach a 5σ discovery sensitivity to a DAMA-like signal within 2 years

Upcoming Publications:

- Monte Carlo simulation of the SABRE South background
- Photomultiplier characterisation methods and initial results
- Technical design report

The Stawell Underground Physics Laboratory was funded by the State Government of Victoria and the Australian Government.