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Targeting 15.3-16.5 GHz at ~ 3 x 10712
(ALP co-genesis)

5 ayy

Scan rate - How fast we can exclude axions
at a given mass and coupling

Scan rate o @~ 13

w < R~'and V « R’ (small cavities)

Small cavities = Small machining tolerances
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Cavity Characterisation

By moving the rod radially the mode is
perturbed, shifting the frequency
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* Digital low pass filter parametrised by d (polynomial order)
and W (2W + 1 point window length)

 Removes large scale baseline variations
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We describe in detail the analysis procedure used to derive the first limits from the Haloscope at Yale
Sensitive to Axion CDM (HAY STAC), a microwave cavity search for cold dark matter (CDM) axions with
masses above 20 peV. We have introduced several significant innovations to the axion search analysis
pioneered by the Axion Dark Matter eXperiment (ADMX), including optimal filtering of the individual
power spectra that constitute the axion search data set and a consistent maximum likelihood procedure for
combining and rebinning these spectra. These innovations enable us to obtain the axion-photon coupling
|9,| excluded at any desired confidence level directly from the statistics of the combined data.
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Combining bins vertically

* Follow the procedure outlined by HAYSTAC

* \ertically combine overlapping single bins
using maximume-likelihood weights

 SNR of a single bin will change based on the
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Combining bins horizontally

» Since Ay, = 32Av,;,, we must also combine bins horizontally

» First rebin the spectrum to Av = 8 Av,;, by adding non-overlapping bins together (using ML weights)

rebin

» Because the SG filter induces negative correlations between nearby bins we start to see a non-Gaussian
distribution.

Fit results: © = 0.0004, ¢" = 0.9926
1

1 1
— Fit
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The Grand Spectrum

* We must also account for the axion lineshape ie. a Maxwell-Boltzman distribution

 Matched filtering: multiply sets of Av,.., =4 Av by axion line shape weights

gran rebin

 Further negative correlations between nearby bins reduces the width (&) of the histogram

Fit results: © = 0.0008, ¢ = 0.9658, ¢ = 0.9730
| | |

— Fit
B Data | -

E8=2=097 2
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Accounting for correlations

« Simulate the effect of the SG filter on Gaussian noise

* Find the full covariance matrix and compare SG filtered vs non-filtered data
for the “rebinned spectrum”

0.99014

» 0, is the variance using the full
covariance matrix

0.99013 -

Al r
0, /O'l

. We find 8//67 ~ 0.99

» We expect &' =6,/0, = 0.99

0000000

[ | | | I I I
0 200 400 600 800 1000 1200 1400 1600

o \Without the SG filter 6;. — Glr — 1 Grand bin number



Accounting for correlations



Accounting for correlations

* Follow the same procedure for the “grand spectrum”



Accounting for correlations

* Follow the same procedure for the “grand spectrum”

. We find 6f/alg ~ 0.97



Accounting for correlations

* Follow the same procedure for the “grand spectrum”

. We find 6f/alg ~ 0.97

0.9702

0.9701

0.9700

0.9699

© 0.9698 1

i

| | | | | | |
0 200 400 600 800 1000 1200 1400 1600
Grand bin number

0.9697

0.9696

0.9695




Accounting for correlations

* Follow the same procedure for the “grand spectrum”

. We find 6f/alg ~ 0.97
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Accounting for correlations

* Follow the same procedure for the “grand spectrum”

. We find 6f/alg ~ 0.97

. We expect &8 = 8f/alg = 0.97

. Without the SG filter 65 = 65 =1
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* Repeat a similar simulation to account for the attenuation of an axion signal
* Find the SNR of an axion with a given power buried beneath Gaussian noise

Do this for non-filtered and SG filtered noise
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* Repeat a similar simulation to account for the attenuation of an axion signal
* Find the SNR of an axion with a given power buried beneath Gaussian noise

Do this for non-filtered and SG filtered noise
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Simulating an axion

* Repeat a similar simulation to account for the attenuation of an axion signal
* Find the SNR of an axion with a given power buried beneath Gaussian noise

Do this for non-filtered and SG filtered noise

0.45

c=1.00

« We find 6 = 1 for the non-

oc=0.96 |-

filtered spectrumand o = 0.96 ...
for the SG filtered spectrum

Density

e The attenuation factor is

then ~ (.92

|
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Normalized Excess Power (o)
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