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ORGAN Run Plan
• Phase 1: Narrow searches around 

15-16 GHz and 26-27 GHz

• Runs 1a/1b (dark green): HEMT-
based amplifiers and TM010 tuning 
rod resonators, form factor of 0.4. 

• Phase 2: Wider searches 
(15-50GHz) building on expertise 
gained in Phase 1

• Phase 2, dark red: Quantum limited 
linear amplifiers (2-4 cavities)

• Light red/green: Single photon 
counter
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Phase 1a

• Targeting 15.3-16.5 GHz at  
(ALP co-genesis)

∼ 3 × 10−12gaγγ

• Scan rate - How fast we can exclude axions 
at a given mass and coupling

•  Scan rate ∝ ω−14/3

•  (small cavities)ω ∝ R−1 and V ∝ R3

• Small cavities = Small machining tolerances
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Cavity Characterisation

TM010

• By moving the rod radially the mode is 
perturbed, shifting the frequency
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Step motor 

Sweep VNA for Q 

and  fc

Set demodulation 

frequency fLO

Digitize

• So far we’ve scanned for ~ 2.5 
weeks (~600MHz)

• We use an IQ mixer and hybrid 
coupler for image rejection of the 
noisy sideband 

Experimental Setup
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Data Taking 
• ~12.5 MHz span, 26,214 point FFT,  

Δνbin ≈ 477 Hz

• IF bandwidth gets cropped to 
~6MHz 

• IF spectrum is free from 
contamination

• Visible thermal profile of the cavity 
mode

• Thermal noise after many averages

• ~5 overlapping traces contribute to  
each RF bin
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Combining bins vertically 

• Follow the procedure outlined by HAYSTAC

• Vertically combine overlapping single bins 
using maximum-likelihood weights

• SNR of a single bin will change based on the 
lorentzian factor, Tsys, QL, β and σ

• Gaussian noise, as you might 
expect 

• No negative correlations between  
bins, since independent scans 
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Combining bins horizontally 

`

• Since , we must also combine bins horizontallyΔνa ≈ 32Δνbin

• First rebin the spectrum to  by adding non-overlapping bins together (using ML weights) Δνrebin = 8 Δνbin

• Because the SG filter induces negative correlations between nearby bins we start to see a non-Gaussian 
distribution. 

ξr = 0.99



The Grand Spectrum 

`



The Grand Spectrum 

`

• We must also account for the axion lineshape ie. a Maxwell-Boltzman distribution 



The Grand Spectrum 

`

• We must also account for the axion lineshape ie. a Maxwell-Boltzman distribution 

• Matched filtering: multiply sets of  by axion line shape weightsΔνgrand = 4 Δνrebin



The Grand Spectrum 

`

• We must also account for the axion lineshape ie. a Maxwell-Boltzman distribution 

• Matched filtering: multiply sets of  by axion line shape weightsΔνgrand = 4 Δνrebin

• Further negative correlations between nearby bins reduces the width ( ) of the histogramξ



The Grand Spectrum 

`

• We must also account for the axion lineshape ie. a Maxwell-Boltzman distribution 

• Matched filtering: multiply sets of  by axion line shape weightsΔνgrand = 4 Δνrebin

• Further negative correlations between nearby bins reduces the width ( ) of the histogramξ

ξg =
ξr

ξ
= 0.97
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• We find ̂σr
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• We expect ξr = ̂σr
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l = 0.99

• Without the SG filter ̂σr
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l = 1
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Simulating an axion 
• Repeat a similar simulation to account for the attenuation of an axion signal 

• Find the SNR of an axion with a given power buried beneath Gaussian noise

• Do this for non-filtered and SG filtered noise 

• We find  for the non- 
filtered spectrum and   
for the SG filtered spectrum 

σ = 1
σ = 0.96

• The attenuation factor is  
then ∼ 0.92
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Predicted Limits 
Still to come..

Preliminary Limits
• Predicted limits using , , Qave = 4000 Tsys = 10K B0 = 11.5T

• Set to be place the most sensitive limits in this region 



Questions?


