Physics analyses with the ATLAS experiment

Harish Potti

The University of Adelaide & ARC Centre of Excellence for Dark Matter Particle Physics

November 29, 2021

Harish Potti

OUTLINE

Combination of searches for invisible decays of the Higgs boson

Machine Learning for Pions

Luminosity measurement using Pixel Cluster Counting method

Di squark searches

Harish Potti

(1) HIGGS BOSON

Run-1 Higgs measurements from a combined ATLAS and CMS analysis JHEP08(2016)045:

- ► All the measurements agrees very well with the SM so far
- ▶ ℬ_{BSM} < 0.34 (0.39) ⇒ Still plenty of room for BSM physics in Higgs decays</p>

Harish Potti

INVISIBLE HIGGS DECAYS

- ► In the SM, $\mathscr{B}_{inv}(H \to \text{invisibles}) \sim 0.1\%$ due to $H \to ZZ^* \to 4\nu$
- ► In many BSM theories, ℬ_{inv} is enhanced due to Higgs decays to stable dark matter particles
- ► E.g. SUSY (LSP), large extra dimensions (Graviscalar)
- ► Tag the production of Higgs boson by VBF or associated production of W/Z or jet recoiling against it

 $H \to \text{INVISIBLES:} E_T^{\text{MISS}} + (Z \to \ell \ell)$

- Requires E_T^{miss} to be back-to-back with $Z \rightarrow \ell \ell$
- Major backgrounds: $(Z \to \ell \ell)(Z \to \nu \nu),$ $(Z \to \ell \ell)(W \to \ell \nu),$ and Z+jets
- A BDT is trained to separate signal from the backgrounds
- ► ℬ_{inv} < 0.18 (0.18) at 95% CL (Ref: 2111.08372)

$H \rightarrow$ Invisibles: Combination

▶ Preliminary combination results with All Run-1+ VBF Run-2+ ttH Run-2: ℬ_{inv} < 0.11 (0.11)</p>

 I am currently working on the statistical combination of all *H* → invisibles analyses performed with full run-2 data of the ATLAS experiment

(2) PION IDENTIFICATION AND ENERGY CALIBRATION

- Pions are the most abundant particles in the *pp* collisions
- ► Separating π^{\pm} and π^{0} and calibrating their energy response is a key element of the reconstruction in the ATLAS calorimeter
- Albert Kong is working on the pion identification using dead material energy
 - Energy deposited by the hadron showers which can not be measured (e.g. no active calorimeter material is present)
 - Estimated using energy in the neighbouring layers or shower topology observables

MACHINE LEARNING FOR PIONS: DEAD MATERIAL ENERGY

Previous work in this area¹ focussed on learning the true deposited energy with neural networks, but can we also learn the dead material energy?

- Preliminary study using a simple dense neural network gives promising results
- Investigating whether PFlow networks can improve prediction accuracy to be correct on a per-cluster basis instead of only on average

http://cdsweb.cern.ch/record/2724632

(3) LUMINOSITY MEASUREMENT USING PIXEL CLUSTER COUNTING METHOD (PCC)

• Luminosity per bunch:
$$\mathcal{L}_b = \frac{\mu_{vis} \times f_r}{\sigma_{vis}}$$

Where, μ_{vis} = Average number of visible interactions per bunch-crossing

$$f_r$$
 = revolution frequency

 σ_{vis} = visible cross-section of inelastic pp interactions

- ► In ATLAS, µ_{vis} is determined using dedicated luminometers like LUCID, BCM
- It is cross-checked by track-counting analysis
- ► CMS uses PCC method for nominal Luminosity estimation

PCC METHOD

- ► Charles Grant, Harish Potti and Paul Jackson recently started estimation of *µ*_{vis} with PCC in ATLAS
- Basic idea: $\mu_{PCC} \propto \#$ clusters formed in the pixel detector
- Need to separate clusters produced by primary particles from secondary particles and noise

(4) MAXIMALLY MIXING DI-SQUARK SEARCHES AT ATLAS

- Tristan Ruggeri and Edmund Ting are searching for di-squark production in *pp* collisions
- Signal model Strongly produced s-top or s-charm quarks
- Final state with two jets and missing energy

ANALYSIS CHALLENGES

tc**+MET**

- Charm-jet tagging: No ATLAS recommended working points for charm tagging, using DL1r based tag developed by tc+MET group
- Signal discrimination:
 - Conventional kinematic based variables
 - Neural Net based approach
 - Recursive Jigsaw Reconstruction

cc+MET

- Charm-jet tagging: Tagging two charm jets with developed working points can result in statistical limitations
- Signal discrimination: Using RJR for compressed mass splitting models, later move to intermediate and boosted models.

RECURSIVE JIGSAW RECONSTRUCTION: DI-SQUARK SEARCHES

- Can use RJR to reconstruct particle decays with the presence of combinatoric and kinematic ambiguities, imposing specific decay topology [PhysRevD.96.112007]
- Apply mass minimisation jigsaw rules for invisible objects to split MET based on jet and parent state properties
- Allocate ISR jets in compressed models for signal discrimination variables
- Develop variables based on SM process topologies to suppress background
- RJR has been incorporated into RDataframes for increased ease of use

ATLAS ANALYSES

A lot of ATLAS analyses are in the pipeline. To know more, interact with these people in the poster session:

- Machine Learning for Pions: Recent Results (Albert Kong)
- Luminosity measurement using Pixel Cluster Counting (Charles Grant)
- Overlap Removal using Global Particle Flow at the ATLAS Detector (Edmund Ting)
- How do we build a particle detector? One byte at a time (Emily Filmer)
- Searches for low-mass BSM resonances using Trigger-object Level Analysis (Max Amerl)
- Di-squark signature searches via Recursive Jigsaw reconstruction (Tristan Ruggeri)

THANK YOU

Harish Potti

Physics analyses with the ATLAS experiment

November 29, 2021 15 / 15