

Metrology - Overview

Ferdos Dastgiri PhD Australian National University

HIAF, ANU

Team

Steve Tims A. Professor

Zuzana Slavkovská PostDoc

⁴⁰K Characterisation

Michaela Froehlich Research Fellow ²¹⁰Pb Characterisation

Ferdos Dastgiri PhD

Context

- SABRE South part of the SABRE international collaboration NaI dark matter detector
- Aim is to confirm or refute annual modulation claims by DAMA/LIBRA at LNGS
- Annual modulation is approximately 0.01 cpd/kg/keV - background is expected to be 1 cpd/kg/keV in the 2-6 keV region of interest [1]
- Requires the lowest possible concentration of radio-contaminants

Cut-out view of a 3D rendering of SABRE. Credit: Michael Mews (The University of Melbourne)

[1] Suerfu, Burkhant et al. "Growth of ultra-high purity Nal(TI) crystals for dark matter searches."

AMS

- Accelerator Mass Spectrometry (AMS)
- Precise atom counting technique utilising accelerator technology

14UD at ANU

Schematic image VEGA, 1MV ANSTO, Sydney

Mike Hotchkis Principal Research Scientist, ANSTO

Rendered image of the 14UD Credit: Thomas Tunningley (ANU)

4

ICP-MS

- Inductively Coupled Plasma Mass Spectrometry
- Used for detection of sensitive measurements of isotopes
 - Samples is atomised and ionised
 - Beam goes into mass analyser separates m/q
 - Measure in detector
- Requires small amounts of sample
- Will be mentioned in ⁴⁰K talk

Image from: Kashani, Arash & Mostaghimi, Javad. (2010). 10.1615/AtomizSpr.v20.i5.40.

Inside the Neptune Thermo Scientific ICP-MS machine at the Research School of Earth Sciences, ANU

Background

• Main contaminants of interest include

In NaI crystal and TI doping

⁴⁰K ¹²⁹I ²¹⁰Pb ²³²Th ²³⁸U

Background

■ ⁴⁰K

- $T_{1/2} = 1.3 \times 10^9$ years very long
- Primordial isotope exists on earth at a well-known concentration of ~110 ppm
- Difficult to separate from NaI
- 1.5 MeV followed by orbital rearrangement producing a 3 keV X-ray or Auger
- More details in ⁴⁰K presentation

¹²⁹I

- $T_{1/2} = 15.7 \times 10^{6}$ years very long
- Present in natural iodine, but mainly from anthropogenic nuclear activity
- β^- decay to ¹²⁹Xe^{*} at ~ 40 keV and deexcitation γ of ~ 40 keV
- Routine AMS isotope
- Measured in two sets of NaI powder. Found in ratio of ${}^{129}I/{}^{nat}I$ to be 2 x 10⁻¹³ = 1 mBq/kg
- DAMA estimated ${}^{129}I/{}^{nat}I = 1.7 \times 10^{-13}$ [2]

From: V.P. Chechev, V.O. SergeevTable of Radionuclides (Vol.1 – A=1 to 150), Monographie BIPM-5

²¹⁰Pb

- T_{1/2} = 22.3 years long
- β decay at 63.4 keV

- Part of the U/Th \rightarrow Rn decay chain
- More details in ²¹⁰Pb Presentation

²³²Th and ²³⁸U

- 232 Th T_{1/2} = 14 billion years
- 238 U T_{1/2} = 4.5 billion years
- Both produce a variety of backgrounds
- Estimated in DAMA [3] and ANAIS [4] Nal crystal to be: ²³²Th - ~ 1.5 mBq / kg

²³⁸U - ~ 7 mBq / kg

- Improvements in crystal purity may be required to perform AMS
- Can potentially measure with ICP-MS

[3] https://doi.org/10.1016/j.nima.2008.04.082

[4] https://doi.org/10.1140/epjc/s10052-019-6911-4

Other contaminants

- Checked other contaminants that can be measured using AMS
- Simulations of cosmic activation, list of 800+ isotopes
- Narrowed this down to 26 key isotopes based on half-life and abundance
- Determined ³H could be of interest

	Α	В	С	D	E	F	G	Н	I
1	#Z	Symbol	Α	E_level[MeV]	halflife[s]	amount_p[nuclei/n]	error_p[nuclei/n]	amount_d[nuclei/n]	error_d[nuclei/n]
2	1	Н	2	0	inf	0.003507141	4.74329E-06	0	0
3	1	Н	3	0	388800000	0.001005917	2.54025E-06	3.67732E-07	4.77492E-08
4	1	Н	4	0	0	4.98545E-07	5.60655E-08	2.69285E-07	4.1815E-08
5	1	Н	5	0	7.995E-23	2.90701E-09	2.90701E-09	6.98372E-09	6.98372E-09
6	1	Н	6	0	2.848E-22	7.79934E-09	7.01113E-09	0	0
7	2	He	3	0	inf	0.000259146	1.28903E-06	0.000980185	2.50753E-06
8	2	He	4	0	inf	0.004733958	5.51209E-06	9.59455E-05	7.83814E-07
9	2	He	6	0	0.807	1.43714E-05	3.03927E-07	0	0
10	2	He	7	0	3.038E-21	7.75308E-08	2.24506E-08	0	0
11	2	He	8	0	0.119	6.08993E-06	1.97482E-07	3.79325E-09	3.79325E-09
12	2	He	9	0	0	3.79325E-09	3.79325E-09	0	0
13	3	Li	4	0	7.557E-23	3.00273E-08	1.33662E-08	2.27594E-08	1.2667E-08
14	3	Li	6	0	inf	1.63375E-05	3.23399E-07	1.41054E-05	3.01359E-07
15	3	Li	1	0	inf	6.65062E-06	2.06368E-07	2.19661E-06	1.18776E-07
16	3	Li	8	0	0.84	1.07065E-05	2.61483E-07	5.94337E-06	1.95334E-07
17	3	Li	9	0	0.178	0	0	4.25058E-08	1.59514E-08
18	3	Li	10	0	0	4.25058E-08	1.59514E-08	1.89667E-08	1.04532E-08
19	4	Be	7	0	4598208	2.19877E-06	1.18759E-07	0	0
20	4	Be	8	0	8.181E-17	2.37466E-05	3.90187E-07	1.53538E-07	3.06845E-08
21	4	Be	9	0	inf	6.412E-07	6.29625E-08	5.46299E-08	1.82092E-08
22	4	Be	10	0	4.765E+13	2.34613E-07	3.97362E-08	0	0
23	4	Be	11	0	13.76	1.41092E-08	9.98933E-09	0	0
24	5	В	8	0	0.77	1.44455E-06	9.58958E-08	0	0
25	5	В	9	0	8.439E-19	1.53538E-07	3.06845E-08	0	0
26	5	В	10	0	inf	2.40806E-05	3.91641E-07	2.56131E-07	4.15678E-08
27	5	В	11	0	inf	1.69425E-05	3.29607E-07	2.00067E-06	1.13715E-07
28	5	В	12	0	0.0202	1.14822E-06	8.63144E-08	0	0
29	5	В	13	0	0.0173	8.68545E-09	7.9757E-09	0	0
30	5	В	14	0	0.0124	9.58598E-08	2.42301E-08	3.43887E-08	1.24141E-08
31	5	В	15	0	0.0102	1.23722E-08	8.74937E-09	0	0
32	5	В	16	0	1.9E-10	1.66627E-09	1.66627E-09	0	0
33	6	С	9	0	0.127	5.49484E-09	5.49484E-09	0	0
34	6	С	11	0	1221.84	1.95497E-06	1.12405E-07	0	0
35	6	С	12	0	inf	0.000200354	1.13364E-06	1.14822E-06	8.63144E-08
36	6	С	13	0	inf	9.53038E-05	7.82186E-07	8.41782E-07	7.31038E-08
37	6	С	14	0	1.799E+11	6.79149E-06	2.0931E-07	6.06927E-08	1.90509E-08
38	6	С	15	0	2.449	9.11433E-08	2.55221E-08	1.23722E-08	8.74937E-09
39	6	С	16	0	0.747	7.72817E-09	7.72817E-09	0	0
40	6	С	17	0	0.191	1.18761E-08	8.74893E-09	0	0
41	6	С	18	0	0.092	4.25534E-10	4.25534E-10	4.25534E-10	4.25534E-10
42	7	N	13	0	597.9	8.33096E-07	7.26674E-08	0	0
43	7	N	14	0	inf	0.000257048	1.28408E-06	6.8535E-06	2.10177E-07
44	7	N	15	0	inf	0.00022109	1.19197E-06	7.32889E-06	2.18349E-07
45	7	N	16	0	7.13	2.31428E-05	3.85619E-07	0	0
46	7	N	17	0	4.171	1.31016E-06	9.15305E-08	1.18761E-08	8.74893E-09
47	7	N	18	0	0.619	6.05112E-07	6.15129E-08	4.25534E-10	4.25534E-10
48	7	N	19	0	0.336	4.32857E-08	1.57517E-08	0	0
10	7	N	20	0	0 136	6.03367E-08	2 0139E-08	0	0

³H

- $T_{1/2} = 12.3$ years
- Cosmogenically activated
- Pure β emitter with transition energy ${\sim}19~\text{keV}$
 - Half are in the range of 1 7 keV
- Electrons emitted are in the region of interest
- Quantification is not easy
 - ANAIS inferred through background models [4]
 - DAMA estimated its upper limit rate ~ 20 cpd/kg [3]
- Not a routine AMS isotope \rightarrow requires specialist laboratories because of the sample preparation

[3] https://doi.org/10.1016/j.nima.2008.04.082

[4] https://doi.org/10.1140/epjc/s10052-019-6911-4

³H

- Estimated that with cosmic activation (~ 3 months) result in order of 10^5 atoms in 1 kg of crystal \rightarrow low
- Asked several laboratories specialising in ³H measurement
- Current measurement methods have detection limits orders of magnitude above what will be required (660,000 tritium atoms).
- Minimisation of exposure to cosmic rays will likely be sufficient to achieve manageable ³H levels.

Measurements using ICP-MS

- ²³⁸U and ²³²Th
- ⁸⁷Rb ⁻ high natural abundance

Thank you for listening!

Next up: ⁴⁰K

NATIONAL PARTNER ORGANISATIONS:

Australian Government Australian Research Council

Australian National University

INTERNATIONAL PARTNER ORGANISATIONS:

UNIVERSITEIT VAN AMSTERDAM

