Exploring the cosmological dark
matter coincidence with
infrared fixed points
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The cosmological coincidence %%TTER

Large range of DM candidates
o Axions, WIMPs, sterile neutrinos, PBHs...

> How to guide our model building?

Clues from current observational evidence:

o Apparent coincidence between the present-day

cosmological mass densities of dark and visible
matter
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TODAY
TT,TE.EE+lowE+lensing+BAO
Parameter 68% limits
Q> . 0.02242 + 0.00014
QR ... 0.11933 + 0.00091

Planck 2018, arXiv: 1807.06209
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Why is it a coincidence? %%T‘THER
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The cosmological mechanisms responsible for
the mass density of visible baryons and most
dark matter candidates are unrelated

> Visible baryons result from a baryon-

antibaryon asymmetry generated through an
unknown baryogenesis mechanism

Radiation

e WIMP

= == = AXION

o WIMPs result from thermal freeze-out

plGeV?]

o Axions result from the misalignment
mechanism

A priori we would not expect the dark and 10-55" J | J J J
visible mass densities to be on the same order 10-% 102 10-%  10°  10-5 1

of magnitude a Jay

Stephen J. Lonsdale, Thesis (2018)
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How do we explain this coincidence? %%TTER@B)
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A similarity such as this often derives from some deep underlying connection

° e.g. electric charge neutrality of the universe = n + = n,-

p

Our goal is to build models in which the mass densities of visible and
dark matter are naturally of a similar order of magnitude

The coincidence problem has two distinct parts: QX —nx XMy

1. Relating number densities
n ~np

2. Relating particle masses
mp ~ Mp
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Approaches to resolving the
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Relating number densities - ADM %%TTER @
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The visible number density: asymmetry between baryons and antibaryons (or a nonzero baryon

number By) Py — Py Pp.— Proton
Qv = ~ "
Pe Pe «— Critical

In Asymmetric Dark Matter models there exists a similar asymmetry in a dark baryon number By,

Wide range of ADM literature where ng ~ np
Most ADM models do not motivate g ~ mp

These are not satisfactory explanations of the coincidence problem
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Relating particle masses %%TT’ER
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The visible baryon mass arises from the QCD confinement scale Ag¢p

We consider dark matter candidates that are baryon-like bound states of a QCD-like confining
gauge group SU(N,)

To relate the particle masses the confinement scales must naturally be of the same order

Aqcp ~ Adagep

There are two main ways to achieve this:

Implementing asymmetric dark matter and dark electroweak baryogenesis

1. Introduce a symmetry between SU(3). and SU(N,) niamlevoe ovo-Hixgrdonbleo model
Alexander C. Ritter®" and Raymond R. Volkas®'
© Exa Ct: FOOt (2004) [a St rO'ph / 04076 23] ARC Centre of Excellence for Dark Matter Particle Physics, School of Physics,
. The University of Melbourne, Victoria 3010, Australia
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2. The gauge couplings of the two groups can evolve to some infrared fixed point
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Dark QCD and infrared fixed points
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Dark QCD and infrared fixed points TTERNCY L0,
Bai and Schwaller (2013) [1306.4676] Fild  SU(NJgo  SU(NaJagen  Multiplicity
> To relate confinement scales, only need to relate SM fermion N, 1 ny,
coupling constants in the IR SM scalar N. 1 ne.
DM fermion 1 Ny ny,
Introduce a dark confining gauge group and new field DM soalnr , N e
content, including bifundamentals Toint fermion . N, "
Joint scalar N.. Ny s
Obtain coupled two-loop beta functions for g. and g4 :
Be = 155}2 [gT(Rf)? (ns, + Nang,) + %T(Rs) (ns. + Nans;) — %CQ(GJ] Model | ny,  mgy, np nse nsy Ny | O g
” N % { (1—0(;‘2(6‘6) N 202(Rf)) T(R,)2 (nf N Ndnfj) A 6 5 3 0 2 0 0.095 0.175
B(g) = Tog () (15’” *L\3 y B |6 6 3 1 0 0 ]008 0120
+ (gcg(Gc) + 402(R.q)> T(R) (s, + Nans,) = 5C3 (Gc)] C 6 6 3 2 2 0 |0070 0.070
| 99 [2C5(Ry)T(Ry)2Nany, + ACs(Ry)T(Ry) Nans, ] D S
(1672)? ! ’ E 77 2 2 1 21009 0.133
The infrared fixed point (s, a;) of a given model F 8 8 2 2 0 1 |0074 0.149
: (selection of field content) is defined by G |8 8 2 2 1 1 ]0082 0.8
a = Z—W /BC(@:, OZZ) — /Bd((}i:, Od;) =0 Tables from Bai, Schwaller [1306.4676]
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Bai-Schwaller model Y\%TT!ER
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All new fields have a mass M = m;, except forthedark — w4+--y+-——-——-—---""-"-""-""""“"“"""--—-
fermions. |

So, for a given model:

1. the coupling constants evolve to the fixed point (as, a;)
regardless of their initial value in the UV

2. The decoupling scale M is determined by matching the
running of ag below M with experiment

3. Thedark confinement scale A;qcp is then determined by

running a4 until it reaches a value of /4 Aoep Aagep M

General Idea: Model | ng, ng,  ng ns, ns, ns |03 ay | M (GeV) | mp (GeV)

model = (a;, CZZ) > M = AdQCD A |6 5 3 0 2 00095 0175| 518 31

B 6 6 3 1 0 0 0.083 0.120 2030 8.6

. C 6 6 3 2 2 0 ] 0.070 0.070 13500 0.32

Calculate dark matter particle mass frommp = 1.5A4ocp T Toor o -

for each model (selection of field content) E |7 7 2 2 1 2 |00 o3| s69 35

F 8 8 2 2 0 1 0.074 0.149 7700 29

G 8 8 2 2 1 1 0.082 0.118 2244 1.2

DARK QCD AND INFRARED FIXED POINTS 12




ARC CENTRE OF EXCELLENCE FOR

Threshold corrections TTERNOY

Bai and Schwaller assumed no threshold corrections
o They were implemented by Newstead and TerBeek [1405.7427]

When decoupling the heavy fields, need to match the full
theory onto the low energy EFT to obtain the correct running
of the couplings constants.
> Matching is performed at a decoupling scale py and is governed by
the consistency condition:

%EFT(#O) = Cfas(uo)

as(p) 1 1
Q'g:l— SG?T nfc—ﬁ—l-Ndnfj—}-a( Sc—i—NdnSj)} In (W

New physics mass scale M no longer uniquely determined for a
given model

New general idea: model, M = ug = Ayocp
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Initial conditions in the UV
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Bai and Schwaller also assumed that the couplings would always
reach the IRFP by the decoupling scale M, regardless of the initial
UV conditions (@Y, aj")

This is not true in general
> we plot this for points satisfying 0 < a{",ay" < 1

Model A, pyy = 1019GeV Lo Model A, pp = 103GeV o Model A, uyy = 103GeV
. . 1 ' .
............. Aqep AdQCD M

084 s s s s s s s 00800 s s 0.8 1 0.8 1

ooooooooooooo 3
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New new general idea: model, M, (", aJ") = uy = Agoco

0.24

0.0
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Explaining the coincidence problem RN s
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o Model A, M = 103GeV 1.0 Model G, M = 10°GeV
For a given model and choice of M, we can plot om0z
Aggep on (adV, af") axes e s I
0.6 1 i . 0.6 1 S — :Ziﬁ : gﬁgéisv
Goal: |2 ¥ § & i
) 0.4 > 041 ? Adgeo = 50GeV
> we want models that naturally obtain Agocp~Agcp < /
0.2 0.2
We c_hoose arange of /_\dQCD values that would N ——— | S0z =01 cov e
feasibly explain the coincidence problem : ot v M
° 0.2GeV < Agocp < 5GeV | Model A M=10°Gev L. Model G, M=10°GeV
. _E = 0.768 =0.185
Define &;: 0 . 05 (= 0185
> the proportion of the (a¥", aJ") parameter space 06 05
that lies between the contours for 0.2GeV and 3 >
5GeV 4 4
° i.e. the proportion of parameter space that results 021 027
in a feasible value of Aggcp oo - 0.0 —_—
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
alv al’
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Asymptotic Freedom TTERNY

Asymptotic freedom depends on (a¥V, aJ")
Model A, M 10 3Gev

I/
1.0
Since 0 < a¥V,ayV < 1, ourset-up is always 8
perturbative below the Planck scale; however,
some cases will be strongly coupled above that 6

Also define ef
UV)

> the proportion of the asymptotically free (a?V, ag
parameter space that produces feasible A q¢p
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Explaining the coincidence problem %%TTER
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To quantify the feasibility of a model, we choose a
minimum value for g,~0.7

1.0

For a particular model, this defines {M};: the range of

values for M for which & > 0.7 .
s
Want to determine how robust the general theory is in Z
explaining the coincidence problem. oo
. a7
Can ask a number of questions: 0.
° In the landscape of random field content selections, what
is the distribution of {M};? 03
° Do many models have a wide {M};?
> Do many models have a narrow {M};? 00— o o o o o o

M(GeV)

° Are there correlations between {M}, and the field
content of the model?

DARK QCD AND INFRARED FIXED POINTS 17
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Concluding remarks Y\%TTHER
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. o o . | —u
The cosmological coincidence is an interesting — fo
starting point for novel dark matter model |
building \
0.4 ”E i
Building models with similar particle masses for \
visible and dark matter is a non-trivial task N N — —
Infrared fixed points for dark QCD provide an T e
interesting new direction for motivating the . Model A M=10°Gev . Model A M=10%Gev
similarity of the visible and dark confinement e 0010
Scales 0.8 > e /\docoflGEV 0.8 1
§ o A::z;sogev
0.6 0.6 4
s = >
¥ : =

0.4 g 0.4 1
Thanks for listening! 7 .
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Dark QCD & IRFPs in an ADM model %%TTHER@B) S
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This theory can be incorporated in an ADM model to provide a full model that explains the
cosmological coincidence problem.

Bai and Schwaller described a simple thermal leptogenesis model to relate ngand np, taking
advantage of the new fields introduced for the IRFP mechanism

They introduced: The mechanism:
* 3 heavy right-handed Majorana neutrinos N; 1. Out-of-equilibrium decays of N; generate
* Two bitriplet fermions ¥; ~(3, 3)3, asymmetries in Y}, ®

Y;~(3,3)-2/3 LD kY1®N; + hee.

* Onebitriplet scalar ®~(3,3)y/3 2. These asymmetries are transferred into visible

matter and dark fermions X;
LK P ?ICYQ + Ko (I)?Q ep + kg P XL dr + h.c.
3. After equilibration and sphaleron
reprocessing, the number density ratio is:

I'TI.-D‘ o 79
ng 56



