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The approach to y scaling previously adopted to obtain the nucleon mornenturn distribution in
the two- and three-nucleon systems is extended to the case of complex nuclei and nuclear matter.
The basic elements of this approach, which takes properly into account nucleon binding and
momentum, are reviewed. A new method of analysis, which allows one to obtain the experimental
asymptotic scaling function from inclusive cross sections even if these data are affected by final-state
interactions, is proposed and illustrated. By such a method, the asymptotic scaling functions of
He, He, ' C, ' Fe, and nuclear matter are obtained from recent experimental data and it is demon-

strated that, particularly at high negative values of the scaling variable, the available data points at
the highest value of the momentum transfer are affected by final-state interaction and cannot there-
fore be considered to represent the asymptotic scaling function. It is shown that, unlike what is
commonly stated, the nucleon momentum distribution is not simply defined in terms of the deriva-
tive of the asymptotic scaling function, but as a sum of such a derivative plus the derivative of a
quantity, the binding correction, generated by the removal energy distribution of nucleons embed-
ded in the nuclear medium. The binding correction and its derivative are evaluated with various
types of spectral functions, and the nucleon momentum distributions in He, He, ' C, ' Fe, and nu-

clear matter are obtained up to nucleon mornenta k =500 MeV/c. For few-body systems the ob-
tained momentum distributions satisfactorily agree with the ones extracted from (e, e'p) reactions
and with theoretical calculations performed within Faddeev or variational approaches, whereas for
complex nuclei they qualitatively agree with predictions of theoretical many-body approaches
which take nucleon-nucleon correlations into account and, at the same time, at k ~ 350 MeV/e they
are larger by orders of magnitude than the ones predicted by mean field approaches. Such a result
does represent unambiguous evidence of correlation effects in nuclei.

I. INTRODUCTION

Since the pioneering work by West, ' there was a
growth of interest in y scaling, both in its experimental
and theoretical aspects. The central issue in this field
concerns the question as to whether the analysis of quasi-
elastic inclusive electron scattering data in terms of y
scaling can provide nontrivial information on the proper-
ties of nucleons embedded in the nuclear medium. In this
regard, one of the main expectations concerns the possi-
bility of obtaining information on the nucleon momen-
tum distribution n (k). This quantity plays a crucial role
in understanding the structure of many-body systems and
in particular of atomic nuclei, for it provides unique in-
formation on nucleon-nucleon (NN) correlations (see, e.g. ,
Refs. 2—6). As a matter of fact, under certain stringent
assumptions, namely, the validity of the plane-wave im-
pulse approximation (PWIA) and the use of nonrelativis-
tic kinematics to describe the scattering process, it can be
shown that the asymptotic scaling function coincides
with the longitudinal momentum distribution. ' Such a
simple picture, however, is no longer valid if relativistic

kinematics is adopted to describe the scattering process;
moreover, the corrections to the PWIA, like, e.g. , the
final-state interaction (FSI), may strongly affect quasielas-
tic scattering at finite values of the momentum
transfer, '" and its e6'ects have also been advocated even
in the asymptotic limit, ' ' although only in the case of
particles interacting via hard core potentials. From an
experimental point of view, the possibility of extracting
the nucleon momentum distribution from qe inclusive
data, relies on the knowledge of the scaling function in
the asymptotic limit, and no clear cut criteria exist to
date to decide whether the available data, which are
necessarily obtained at large, but finite values of the
momentum transfer, can be associated with the true
asymptotic region. It would appear, therefore, that the
extraction of the momentum distribution from y scaling
is not an easy task. Nonetheless, in view of the basic
necessity of the experimental knowledge of the nucleon
momentum distribution, serious eA'orts are worth being
done in order to clearly understand if, and to what ex-
tent, such a quantity can be obtained from quasielastic
data.

In two previous papers of ours, ' ' it has been shown
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that if a proper theory of y scaling, which takes into ac-
count nucleon binding and momentum, is adopted, quasi-
elastic experimental electron scattering cross sections at
high momentum transfer from H (Ref. 18) and He (Ref.
19) allow one to extract nucleon momentum distributions
which satisfactorily agree with those obtained in a more
direct way from exclusive (e, e'p) experiments, ' ' thus
confirming the expectation that the nucleon momentum
distribution can indeed be obtained from a y-scaling
analysis of inclusive cross sections. In view of the recent
appearance of experimental data for He, ' C, Fe (Ref.
22), and of extrapolated data for nuclear matter in the
low-energy side of the quasielastic peak, where y scaling
is expected to be observed, we have extended to complex
nuclei the approach of Refs. 16 and 17. The approach
has moreover been implemented in such a way as to ob-
tain a model-independent determination of the asymptot-
ic value of the scaling function from the experimental
data obtained at high, but finite values of the momentum
transfer, even if these data are aft'ected by the final-state
interaction. Our approach allows one to obtain the
asymptotic value of the scaling function without the need
of data at very high momentum transfer, where the dom-
inant contributions from inelastic and deep inelastic
scattering by the nucleon will hinder the extraction of the
quasielastic contribution.

The main outcome of our work is that the nucleon
momentum distribution in complex nuclei can be deter-
mined up to k =500 MeV/c, using the present (e, e') ex-
perimental data. This result appears to be a relevant one,
for in the region 300 MeV/c + k +500 MeV/c exclusive
(e, e'p ) experiments on complex nuclei have not yet been
performed and, more important, theoretical predictions
by mean field approaches difT'er by orders of magnitude
from the predictions of approaches where the eA'ects of
XX correlations are taken into account. Our results al-
low one to conclude that for k ~ 300 MeV/c the nucleon
momentum distribution is almost entirely determined by
the e6'ects of XX correlations, in agreement with recent
theoretical predictions.

Our paper is organized as follows. In Section II the
definition and the physical meaning of the scaling vari-
able and the scaling function will be briefly reviewed; in
Sec. III the nucleon spectral function and its relations
with the scaling function and the momentum distribution
will be illustrated; in Sec. IV the new approach for ob-
taining the asymptotic scaling function and the nucleon
momentum distribution will be described; in Sec. V the
nucleon momentum distributions in He, He, ' C, Fe,
and nuclear matter will be presented; in Sec. VI the gen-
eral features of the nucleon momentum distributions re-
sulting from many-body calculations and from our y-
scaling analysis will be discussed; the summary and the
conclusions are presented in Sec. VII.

II. THE SCALING FUNCTION AND THE SCALING
VARIABLE: THEIR DEFINITION AND PHYSICAL

MEANING

The general concepts of y scaling in quasielastic elec-
tron scattering by nuclei have been introduced by West, '

who has developed an approach aimed at establishing a
relation between the scaling function and the form of the
NN interaction (for recent developments along this line,
see Refs. 24 and 13). The basic assumptions underlying
West's approach are (1) one-photon-exchange approxima-
tion; (2) only the nucleon degrees of freedom are con-
sidered; (3) after interaction with the photon, a nucleon
with momentum k undergoes a transition from the free
state with kinetic energy T, =k /2M to the free state
with kinetic energy T2 =(k+q) /2M, q being the three-
momentum transfer; (4) the convective current in the
electron-nucleon cross section is disregarded; (5) nonrela-
tivistic kinematics is used. Within these approximations,
it has been shown' that the inclusive cross section factor-
izes into the elementary electron-nucleon cross section,
a kinematical factor and a function f (the
scaling function) of the variable yo (West's scaling Uari

able), which represents the longitudinal (along q) momen-
tum component of a nucleon embedded in a Fermi gas,
viz. yo=(q k)/q=(M/q)(co —

q /2M); the scaling func-
tion itself is

f (yo) =2'f nFG(k)k dk,FG

i.e., the longitudinal momentum distribution of a nucleon
with Fermi gas momentum distribution n„G(k).

An approach to y scaling, aimed at considering the
momentum and energy distributions of nucleons in a sys-
tem of interacting particles, as well as relativistic kine-
matics to describe the scattering process, has been pro-
posed by the present authors within the PWIA. This pa-
per is based on such an approach, whose main assump-
tions and features will be recalled here below (for more
details, see, e.g. , Ref. 25). In our theory of y scaling, the
momenta of the bound nucleons and their separation en-
ergies are correctly taken into account, unlike approxi-
mate versions of y scaling, where the separation energy
and the perpendicular momentum component have been
disregarded, with a resulting ambiguous definition of
the scaling function and the scaling variable. In this re-
gard, it should be pointed out that at present there is a
general consensus ' as far as the definition of the scal-
ing function as given in Ref. 25 is concerned.

A. The plane-wave impulse approximation cross section

The inclusive electron scattering cross section describ-
ing, in PWIA, the knock out of a nucleon X from a nu-
cleus 3, is

o2(q, co): '= g fdE f—d k Ptt(k, E)cr,~5[co+M„—E2(k~) E~(ktt )], —
ddt) dQ (2)

where co is the energy transfer, q —= ~q~ the three-momentum transfer, k=k& —q the nucleon momentum before interac-
tion, E=E;„+Ef*

&
the nucleon removal energy [E;„=M+M&

&

—Mz and Ez~*
&

is the excitation energy of the
final ( 3 —1) nucleon system], E2(k&) = [M~+(k+q) ]'~ the nucleon energy in the final state, kz = —k and
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Eti(kii)=[(M„, +E~~" i) +k ]' the momentum and energy of the recoiling final (A —1) system, and, finally,
o,jv =cr,~(q, co, k, E) the relativistic electron-nucleon cross section for the scattering of an electron by an off-shell nu-
cleon with momentum k. In Eq. (2), P~(k, E) is the nucleon spectral function, which represents the joint probability dis-
tribution to find in the target nucleus a nucleon with momentum k and removal energy E or, equivalently, the joint
probability distribution that, after a nucleon with momentum k has been removed from the target, the ( A —1)-nucleon
system is left with excitation energy E~,. By disregarding, for ease of presentation, any difference between the proton
and the neutron spectral functions, P(k, E) can be defined as follows

P(k, E)= g (e„~a„+5[E—(H —E„)]a„~e„)1

M, cr

g Xf ~('Pf„ i~aj, ~%„)~
5[E (Ef,—E~)—]

M, o.

2
(2~) ' g Xf fdze'"'Gf (z) 5[E (Ef—, E„)]-,

M, o.
(3)

Gf (z) = (y', %~,(x, . . . , y) ~%„(x, . . . , y, z) ) (4)

between the eigenfunction %z and the eigenfunction
(with eigenvalue E~,=E„,+E„*,) of the

state f of the intrinsic Hamiltonian H, pertaining to the
system of A —1 interacting nucleons. Since the set of the
states f also includes continuum states of the residual

where ai, (ak ) is the creation (annihilation) operator of
a nucleon with momentum k and spin o", H the intrinsic
hamiltonian for interacting nucleons and %z the eigen-
function of the ground state of the Hamiltonian for A nu-
cleon system (with eigenvalue E„, total angular momen-
tum J and third component M). The function Gf (z) in
Eq. (3) is the overlap integral

( A —1) nucleon system, the sum over f in Eq. (3) stands
for summation over the discrete states of the ( A —1) sys-
tem and integration over the continuum states. The spec-
tral function (3) exactly includes all "final-state interac-
tions" in the states of the ( A —1) system, the only plane
wave being that describing the relative motion of the
knocked-out nucleon and the (A —1) system. The nor-
malization of the spectral function is such that

4~/ P(k, E)k dk dE=1 .

In order to evaluate the quasielastic section from Eq.
(2), the energy conserving 5 function can be eliminated by
integrating over cosa. = (q k) /(qk), obtaining

Emax q'~ max q'~' Bcooz(q, ~)=2~ g J dE J dk k P~(k, E) o,~(q, ~, k, E).
min min [&' cosa

where the limits of integration, fixed by the energy conservation

+M:+Mz+ (k+ q)2+ QM42 +kz

with M~, =M& &+Ef*
&
=E+M~ —M, are as follows

E;„=IE„ I

—
I E„,I =M„,+M M„, —

Emax ™w
k;„=(co+M„)~kcM—[q/(co+M„)][(M„,+Ef*, ) +kcM]'~ ~/M„*,

k,„=(co+M„)[kc~+[q/(F0+M„)][(M„,+Ef*, ) +kcM]'~ j/M„*

with M„* = [(co+M„) —
q )' being the invariant mass, and

[[M„* (M~, +E~f*, )
——M ] —4(M~, +E„*,) M j'r

2M~

The factor
~
c}co/k 8 cosa

~
in Eq. (6), which results from the dependence of Ez ( k~ ) upon cosa [k~ = ( k

+q +2kq cosa)' ], is given by

67

kB cosa' (M +q +k +2kq cosa)'~

g

Ez(kx) (13)
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and cJ,~(q, co, k, E) is the electron-nucleon cross section for a relativistically moving nucleon, averaged over the polar
angle, e.g., the one from Ref. 32

2
c7~ q (E +E2)

EE (F11V+ +F21' )— (F1N+F2n )
E&E2 q~ 4

2

+ tan —+20 qp

2q

—2

k sin a(F,~+rF~„)+ (F,ted+F2„)2
(14)

where E, =&M'+k', q„' =q' —~', q „'=q' (E)——E2)',
r= q „/(4M ), and cr~ is the Mott cross section. In spite
of the fact that in Eq. (6) the factor E2(kz ) in the denom-
inator of ~c)co/kc) cosa

~

cancels exactly with the same fac-
tor in the denominator of o.,&, the quantity
(cr,~ c)co/kB cosa ') still depends upon k and E. Such a

dependence, however, is very weak at high momentum
transfer [we have checked that the convective term, pro-
portional to k sin n, which gives a contribution to the
cross section less than 5% at q„)0.5 (GeV/c), be-

comes negligible at q„) 1 (GeV/c) ], so that cr,~ and
~c)~/kc) cosa~ ' can be replaced by their values s,~ and

~
c)co/k c) cosa

~

', respectively, calculated with, e.g. ,

E~/*, =0 (i.e. , E =E;„)and k =k;„(q,co,E,„). There-
fore Eq. (6) can be written in the factorized form

cr2(q, co)=(Zs, +Vs,„) Bco

kB cosa F(q, co), (15)

where the nuclear structure function F(q, ra) is
E „(q,~) e,„(q,~, E)

F(q, co)=2'j dE j P(k, E) k dk .

(16)

Using various expressions for the nucleon form fac-
tors, we have checked (see, e.g. , Ref. 25) that for H,
He, and ' C the factorized cross section (15) differs from

Eq. (6) by only few percents in the peak, for q ) 3 fm
and by at most 10% in the low-energy side of the peak,
for q) 9 fm

B. The scaling function and the scaling variable

By introducing a new kinematical variable, the scaling
variable y, which, for the time being, is only required to
be a function of q and co and of no other variables, any
dependence upon co can be expressed as a dependence
upon q and y, so that the nuclear structure function (16)
can be rewritten as

E, (q, y) a, (q, y, E)
F(q,y)=2~j dE j„P(k,E)kdk .

The central issue in y scaling concerns the answer to
the following questions: (1) under which conditions the
quantity F(q,y), which will be hereafter called theoretical
scaling function, scales in y, i.e. , becomes a function of y
only' ?; (2) which is the explicit expression and the physical
meaning of the scaling variable' ?; (3) what kind of infor-
mation could be provided by the measurement of F(q,y)
in a wide range of values of q and y? The answer to these

The scaling variable satisfies the equation

co+M„=[M +(q+y) ]' +[M2, +y ]'

and has the following explicit expression

y=(2M„* ) '( —qA+ Iq b, —4[(co+M„) M~

(20)

(21)

with 6 =My +My ] M; as a consequence, y (0 cor-
responds to co + copeak~ a d y )0 to co) copeak~ with
co „k=(M +q )' +M~ (

—M„.
Let us note, eventually, that by using the scaling vari-

able defined by Eqs. (20) and (21), the kinematical factor
~
Bco/kc) cosa~ in Eq. (15) becomes

q
E2( iq+y i )

(M +q +y +2qy)'
(22)

questions will be given in what follows. The expressions
of E,„and k,„given by Eqs. (8)—(12) and the observa-
tion that P(k, E) is a rapidly decreasing function of k and

E, lead readily to the conclusion that, already for
moderate values of the momentum transfer, E,„and
k,„can be safely replaced by infinity (E,„=k,„=00 )

in Eqs. (16) and (17). Therefore the q dependence of the
structure function (17) will be essentially governed by the

q dependence of km;„; the latter [Eq. (10)] is determined
from the energy conservation [cf. Eq. (7)]

co+Mz =+M +(q+k;„)
+Q(M, , +E/*, )'+k', „

and therefore is a function of three independent variables:
k;„=k,„(q,co, E). The positive and the negative sign in

front of k;„ in Eq. (18) correspond to co) coo and to
co (coo, respectively„with coo=(M +q )'~ +M~
—M~.

j et us suppose that in the process under consideration
Ez~*, =0, i.e., E =E;„(aphysical case will be discussed
in the following subsection, while the general case will be
considered in Sec. II 8 2); then k;„will depend only

upon q and co and therefore, by definition, can represent a
scaling variable y, i.e.,

iy i

=k;„(q, co, E;„).
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1. Scaling in the t~o-body system

In the two-body system, one always has E~'
&
=0

(E =E;„=2.225 MeV), so that the spectral function is
entirely determined by the nucleon momentum distribu-
tion n (k), i.e., P(k, E)=n(k)5(E E;„—), and, conse-
quently, k;„=~yt for any value of q; the structure func-
tion (17) becomes, in this case,

F(q, y ) =2ir f n(k) k dk . (23)
lyl

Scaling in the deuteron is therefore governed only by
the q dependence of k „;for large values of q, such that
k „=~, the scaling function (23) reduces to the longitu-
dinal momentum distribution

f(y)=2~ f n(k) k dk . (24)

In the asymptotic limit, q ~ co, one has

lim k;„(q,y, E)= k ";„(y,E )
q~ oo

2 42Ma &
M= y+

2[y+(M +y )'

= ly (E —E,„)I— (26)

the latter equality holding when
~ y ~

&&Mz i and
E~*, (&M„&. Therefore, the asymptotic scaling func-
tion for a complex nucleus becomes

F(y)=2' f dE f P(k E) k dk (27)
min k (y, E)

and scaling in the variable y is recovered. An important
di6'erence with respect to the two-body case does howev-
er occur: in the latter case the asymptotic scaling func-

2. Scaling in many-body systems
and the role played by nucleon binding

For a many-body system Ef„*,WO, so that k
=k,„(q,ro, E) cannot be assumed as a scaling variable,
for it depends upon the removal energy E. Therefore
there is a certain degree of arbitrariness concerning the
definition of the scaling variable, since any k;„with a
fixed value of E~*

&
depends only upon q and co and

therefore can be chosen as a scaling variable. It is howev-
er very useful to adopt, even for a many-body system, the
definition given by Eqs. (20) and (21): as a matter of fact,
the scaling variable defined in such a way has a very clear
physical meaning, since it represents the minimum
momentum of nucleons with minimal removal energy.
Furthermore, deviations from scaling in this variable, at
finite q, can entirely be ascribed (within the PWIA) to the
e6'ect of binding, i.e., to the contribution to the qe cross
section of nucleons with EWE;„or, equivalently, to the
contribution of the excited states of the Anal nucleus with
energy E~ &

)0. Indeed, for a complex nucleus the
structure function (17) can be rewritten, at finite but large
enough values of q, in the following form:

F(q,y)=27r f dE f P(k, E) k dk . (25)
nil n

tion coincides with the longitudinal momentum distribu-
tion [cf. Eq. (24)]. This is not the case for a complex nu-
cleus, for which the longitudinal momentum distribution
is given by

f(y)=2' f dE f P(k, E) k dk
Em lyl

=2' f n(k) k dk
lyl

With

(28)

n(k)= f P(k, E) dE . (29)
min

It is clear that the extent to which the longitudinal
momentum distribution (28) differs from the asymptotic
scaling function (27) depends upon the role played by nu-
cleon binding in quasielastic scattering.

In closing this subsection, we would like to point out
that the dependence of k ";„upon E through relation (26)
is a consequence of the use of relativistic kinematics to
describe the scattering process. When nonrelativistic ki-
nematics is used, the energy conservation equation is

co =(k+ q) /(2M ) +k /(2M~, )+E

and the scaling variable becomes

=
~

—pq+ [2Mp(ro E;„)+q—p(p 1)]'~ ~, —

(30)

(31)

where k"';„ is the nonrelativistic value of k;„and
p=M»/(M„ i+M). In the asymptotic limit one has
lim~ „k"';„(q,y, E)=~y~ for any value of the removal
energy, so that the asymptotic scaling function coincides
with the longitudinal momentum distribution. The latter
limit, however, is reached for q ))M. Indeed, at high but
finite values of q one has

k"';„(q,y, E)= y
(E E;„)M—

3. Approach to scaling, ftnal state-
interaction, and the deftnition

of the experimental scaling function

To sum up, the nuclear structure function (16) natural-
ly scales in the variable y defined by Eqs. (20) and (21). If
the following definition of the experimental scaling func-
tion is adopted

o'z"~(q, co)
FexP (

(Zs,„+¹,„) k 8 cosa
(33)

Eq. (15) shows that F;" (q, y) will coincide in PWIA with
the nuclear structure function (16) and therefore will

up to the first order in (E E,„)/q and to th—e second or-
der in y/q. Therefore for q &M the identity of F(q,y)
and f (y) does not hold and the full expression of F(q,y)
has to be used, even within nonrelativistic kinematics.

Hence, the di6'erence between the longitudinal momen-
tum distribution and the asymptotic scaling function is of
pure kinematical origin and stems from the necessity of
using relativistic kinematics when taking the limit q ~ oo.
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scale in y.
We would like to stress that the scaling variable

defined by Eqs. (20) and (21) and the scaling function
defined by Eq. (33), which naturally follow from the
PWIA description of quasielastic scattering, allow one to
establish the following model-independent criterion, al-
ready formulated in Refs. 25 and 16, concerning the ap-
proach to scaling. Since, for fixed values of y(0, E „
and k „increase with q, whereas k;„decreases, then,
independently of the form of the spectral function P(k, E),
the structure function (I 7) increases with q, until it reaches
its asymptotic Ualue giuen by Eq. (24) for the deuteron,
and Eq. (27) for a complex system. Therefore, if the
PWIA holds, the experimental scaling function should ap
proach its asymptotic value by increasing with q, i e , f. r.om
the bottom; a difierent approach to scaling would therefore
represent a proof of the breaking down of the PWIA at
finite q and a clear signature of the presence ofFSI.

A plot of F&'", which unifies diA'erent sets of data cor-
responding to rather difFerent kinematics, would there-
fore allow one to do the following.

(1) To single out the region (y &0, co & co„„„)where the
qe cross section is mainly determined by nucleonic de-
grees of freedom, and scaling should be observed, from
the region (y )O, co & co„„i,) where non-nucleonic degrees
of freedom play a dominant role, and y scaling should be
grossly violated.

(2) To investigate in great detail, for y &0 and low
values of q, the efFects from FSI.

(3) To obtain information on the nucleon spectral func-
tion and the nucleon momentum distribution from the
analysis of the asymptotic scaling function obtained from
the inclusive cross section at high values of the momen-
turn transfer.

As far as point (1) is concerned, the usefulness of plot-
ting data in terms of a scaling variable was first illustrat-
ed in Ref. 35 using only the few available medium-energy
data. It was only in 1980, thanks to the availability of
quasielastic cross sections spanning a large range of q and
co, that the concept of nuclear y scaling could be properly
tested. Subsequently, the y-scaling analysis was extend-
ed to the separate longitudinal and transverse
responses. Point (2), i.e., the effects from final-state in-
teractions has been the object of several investiga-
tions' '' . Finally, point (3) has been studied in Refs. 16
and 17, where the nucleon momentum distribution in H
and He have been obtained; the aim of this paper is to
improve the approach adopted in Refs. 16 and 17 and to
extend it to the case of complex nuclei (preliminary re-
sults can be found in Ref. 38). Before that, let us briefiy
discuss the scaling variables and functions used by other
authors in the framework of relativistic kinematics.

C. Scaling functions and variables used by different authors

structure properties becomes ambiguous.
The relativistic scaling variable used in this paper [Eq.

(20)] coincides with the one first introduced in the
analysis of Ref. 36, where it was however interpreted as
the component of the nucleon momentum along the
momentum transfer (longitudinal momentum component)
i.e., y=(q k)/q=k~i=k cosa. Such an interpretation is
based on the assumption (see, e.g. , Ref. 26) that at high
momentum transfer Ez* i and ki (ki=k sina is the
momentum component perpendicular to q) can be disre-
garded in the energy conservation (7). The latter can be
written in the following form (k =k

~~

+k i )

co+M =(M +q +k +k +2qkll)'

+ [(M„,+E/, *,)'+k'„+ k', ]'" (34)

which shows that
k~ =k~~~(q, co, E~&* i, kz), so that in order

to have kii(q, co, E„*,, ki)=k~~(q, co)=y one has to as-
sume that E~*

&
and k~ can be disregarded. It can on the

contrary be shown that, even in the asymptotic limit
(q ca ), k~~ will still depend upon E~~*

i and k~. As a
matter of fact, for a fixed value of y [defined by Eqs. (20)
and (21)] we have from Eq. (34), up to first order in 1/q,

kii(q, co, E~*,, ki) =y+
2[y+(M~ -i+y')'"1

k~ M~ )+kq1+
4q [y + (M 2 +y

2
)

i / 2
]

2

(35)

and then

k((
—lim kil q'co, E4*,, ki )

q —+ oo

=y+(M~, —M„*,—ki )/[2y+2(M„, +y )'~ ] .

(36)

Therefore, even if only the terms of the first order in
y/~g i, &, /M~ „and E~*,/M~, are retained, one
obtains

k
~)

—y(1+E~*—i /M~ —i) —E~*—i

(E/*, +k )/—2M, =y E/*, ,
—

so that k~~ depends strongly on E~*, and cannot be
adopted as a scaling variable.

The assumption that at high momentum transfer E~*,
and k~ can be disregarded in the energy conservation not
only implies that k~~ =y, but has also a profound impact
on the definition of the scaling function. In fact, follow-
ing this hypothesis, k~~ would be the only relevant nu-
cleon quantity appearing in the scattering process, and
the following relation could be written

Our definitions of the scaling function and of the scal-
ing variable directly result from the PWIA [Eq. (2)] using
relativistic kinematics. In principle other definitions
could be possible, but in such a case the link with the un-
derlying reaction mechanism is less direct, and the inter-
pretation of the experimental data in terms of nuclear

2(qo, c)dco(Zo+sXs )f(y )dy (37)

with f(y) representing the probability distribution to find
a nucleon with momentum k~~ =y. From the above equa-
tion the definition of the scaling function used, e.g. , in
Refs. 26 and 36 would naturally follow
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2 dcoF2"i'(q, y) =
(Zs, +¹,„) dy

(38}
It is also interesting to consider our formalism in the

limit of very large nuclei. In this case energy conserva-
tion (7) becomes

which differs from the definition (33) in the phase space
factor: the one in Eq. (33) is co+M —[M2+ (k+q)2]1/2+MA (41)

c}co/kc}coscc=q/(M +q +y +2yq)'~ (39)

and results from the use of the correct argument [Eq. (7)]
in the energy conserving 5 function appearing in Eq. (2),
whereas the one in Eq. (38) is

dco/dy=(q+y)/(M +q +y +2yq)'~

+y/(M„, +y )' (40)

and results if, besides the PWIA, the additional approxi-
mation of disregarding k~ and E~'

&
in the argument of

the 5 function, is also made.
If the experimental data are analyzed in terms of Eq.

(38) (see, e.g. , Refs. 18, 26, and 36) and Eq. (37} is con-
sidered to be the correct description of the scattering pro-
cess within the framework of PWIA, then it follows that
Fz""=f(y) [Eq. (28)]. Such an equality, however, does
not hold: indeed, due to the fact that, for y (0, dco/dy is
smaller than c}co/kc}cosa [cf. Eqs. (39) and (40)], it can be
seen that one has F", " &F'," in the region of interest for
y scaling, while in PWIA one has Fi"1' ~ f(y) [see Sec.
II B 2, Eqs. (27) and (28)]. The extent to which FP and
F2'" will differ is given by the value of the ratio
R =(dco/dy)(c}co/kc} cosa) '. From Eqs. (39) and (40) it
can be seen that R =1 and F&"~ =F2'P for y =0, whatever
the value of the momentum transfer, while for q ~ ~ one
has RR" =1+y/(M„, +y )'; thus for a light
system, apart from the point y =0, F]' and F2"" will al-
ways strongly differ. For a heavy nucleus, one has
Mz &

))y and R =1, but at finite momentum transfer
R =1+y/q, so that even for a complex nucleus F;" and
F2' are different, e.g. , for Fe they differ at q =4
(GeV/c) and y= —0.5 GeV/c by about 30%. There-
fore, the extraction of information about nucleon dynam-
ics by using the definition (38) is rather ambiguous.

The issue of the form of the phase space factor to be
used in the definition of the scaling function, has been
discussed in Refs. 25 and 27, and has again been raised
recently in Ref. 29. The results of Ref. 29, where the free
electron-nucleon cross section for a nucleon at rest has
been used and the removal energy has been disregarded,
are a particular case of our general approach in which
the scattering takes place off moving nucleons. In this re-
gard, we would like to point out that in recent analyses
for complex nuclei the same form of the scaling func-
tion as ours, with the proper consideration of the motion
of the off-shell nucleon through Eq. (14), has been adopt-
ed.

One readily obtains for k —=k;„,k+ =—k „and for the
scaling variable y [defined as in Sec. II B by the equation
y =+k;„(E;„)]the same expressions used in Ref. 31,

k+(E)=lq+[(co E) +2M(co E)] "l,
y = —q+ [(co E;„—) +2M(co E;„)—]'~~,

(42a)

(42b)

III. THE NUCLEON SPECTRAL FUNCTION
AND ITS RELATIONS WITH THE SCALING

FUNCTION AND THE MOMENTUM DISTRIBUTION

A. The spectral function
and the nucleon momentum distribution

As already explained in Sec. II A, the spectral function
[Eq. (3)] represents the joint probability to find in the nu-
cleus 3 a nucleon with momentum k and energy E or,
equivalently, the probability that, after a nucleon with
momentum k is removed from the target A, the system
(3 —1) is left with intrinsic excitation energy E„*,. It
can therefore be represented in the following form' '

P(k, E)=Pg„(k,E)+P, (k,E),
where P „(k,E)=n „(k)5(E E;„)yields—the probability
distribution that the final (2 —1) system is left in its
ground state (corresponding to Ef*,=0 and
E =E;„=lE„l—lE„,l ), whereas P,„(k,E) yields the
probability distribution that the final (A —1) system is
left in the excited state with excitation energy
Ef*,=E E;„[it is cl—ear that P,„(k,E) vanishes for
E';„)E ~ E;„,where E';„ is the removal energy corre-
sponding to the first excited state of the final ( 2 —1) sys-
tem]. The following exact relations between the spectral
function and the momentum distribution n (k) will be
used in what follows

(n)k=( m2) f e'"'* *'p(z, z')dzdz'

= f P(k, E)dE=n~„(k)+n, „(k),
min

(44)

where p(z, z') is the nondiagonal one-body density matrix
and

and, once again, one has k ";„=k "(E)= ly (E—
In conclusion, our formalism is a very general one,

from which various particular cases (e.g., static nu-
cleons and large nuclear masses ') readily follow.

n „(k)=f P „(k,E)dE=(2ir) (2J+1) ' g f e'"'*Go (z)dz
min M, o

(45)

n, (k)= f P,„(k,E)dE=(2m. ) (2J+1) ' g Sf&0 f e'"'*Gf (z)dz
min M, cr

(46)
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Equation (43) holds for any value of A, but for a complex nucleus it is also useful to adopt another representation of
the spectral function in which the ground state of the ( A —1) system and its excited states represented by one hole exci-
tations are explicitly separated from more complex configurations, e.g. , one-particle —two-hole states, which can be
reached when two-particle —two-hole states in the target nucleus are considered. One has

P(k, E)=Pa(k, E)+Pi(k, E), (47)

2
P (k, E)=(2n) (27+ I) 'g X f e'"'6 (r)dr 5(E —le l)

M, o.

= ~ -'r..~.n. (k)5(E —le. l) (48)

P, (k, E)=(2m) (2J+ I) ' g Xf~ fe'"'Gf (r)dr 5(E E, ), — (49)

where n (k) is the hole state momentum distribution
with single particle (sp) energy e and nucleon number

(X A = A ), the sum over a runs only over hole
states of the target, and E& =—F.z* &+E;„. Within the
Hartree-Fock (HF) approximation, P, (k, E)=0, and the
HF spectral function, viz.

P,"'(k,E)= ~ -'r..~.n"."(k)5(E—le. l ), (50)

n(k) =no(k)+n, (k),
where

no(k)= jPO(k, E)dE, n, (k)= fP, (k, E)dE . (53)

It should be pointed out that in Eqs. (48) and (51) the
finite width of the hole states generated by NX correla-
tions has been disregarded; such an approximation, as

argued in Ref. 41, has minor effects on the inclusive cross
section we are interested in.

B. Scaling function and momentum distribution

is recovered. The main difference between n (k) appear-
ing in Eq. (48) and n "(k), concerns their normalization,
or hole state occupation probability S =4m f n (k)k dk;

in fact, due to the ground state correlations, S &1,
~hereas S "=1;correspondingly, for a particle state i,
S, &0 and S, "=0. For an extended system like nuclear
matter, the hole part of the spectral function can be cast
in the following form

P~™(k,E)=3/(4~k„)Z(k)e(kF —k)5[E+e(k)], (51)

where Z(k) is the hole strength, e (k) the hole single par-
ticle energy spectrum and kF the Fermi momentum [in
absence of XX correlations e(k) =k /2M, Z(k)=1 and
the usual Fermi gas spectral function is recovered].

Within the representation (47), the nucleon momentum
distribution becomes

n(k)=—,k=lyl1 df (y)
2&/

(54)

For 3 & 2, the above equation does not hold and nucleon
binding can play a substantial eff'ect. In order to take
care of binding effects when extracting n(k) from the
scaling function, the following procedure has been adopt-
ed. ' Using Eq. (43), the scaling function (25) becomes

F(q,y)=2' f ns„(k)k dk
lyl

+2~f ™
dE f" P,„(k,E) k dk, (55)

where the first term trivially scales in y, whereas the
second one, because of the explicit dependence of k

upon the momentum transfer, does not. Such a "scaling
violation" is entirely due to the nucleon binding, and, as
discussed in Sec. II 8, is only present at finite values of q;
as a matter of fact, in the asymptotic limit one has [cf.
Eq. (27)]

F(y)=2nf n „(k)kdk
lyl

+2~f dE j P, (k, E) k dk (56)ex

or, using the representation (47)

F(y) =2~3 'X A f n (k) k dkk,.„(y, le I)

+2~f," dE f" P, (k, E) k dk .
Em,„k (y E)

(57)

min y'
B(y)=2' f dE f P, (k, E) k dk

min lyl

(59)

is the contribution arising from P,„(k,E). Taking the
derivative of both sides of Eq. (58), one gets

Equation (56) can be trivially cast in the form

F(y) =f(y) B(y), — (58)

where f (y) is the longitudinal momentum distribution
(28) and

For the two-body system the asymptotic scaling func-

tion is given by Eq. (24), from which the momentum dis-

tribution can be trivially obtained by a simple derivative

n(k)=—

where

2&+

dF(y) dB
dp

(60)
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dB
2 f

min

dE P, (lyl, E)— 1—
jV —jV

P,„(k,„(y,E ),E ) (61)

The quantities B (y) [Eq. (59)] and dB /dy [Eq. (61)] have
been called in Ref. 17 the binding corrections to the scal-
ing function and to the momentum distribution, respec-
tively. It follows from Eq. (60) that the nucleon momen-
turn distribution can be obtained from y scaling only if
the binding correction B(y) and the asymptotic scaling
function F(y) are known. For He it has been shown in
Ref. 17, that in a wide range of y, the binding correction
to the momentum distribution is much smaller than the
derivative of the scaling function, even if the binding
correction to the scaling function has been found to be
very large. The same general pattern appears to hold
for complex nuclei as well, at least for values of the nu-
cleon momentum k (500 MeV/c, as will be shown in
Sec. V.

Furthermore, it is important to realize that for y &0
the sign of the binding correction to the momentum dis-
tribution is known both at y =0 and at large values of lyl:
(i) for y =0 one has dB /dy (0, because the term propor-
tional to (E E;„)is —the dominant one in Eq. (61) and is
negative [we wish to recall that P,„(k,E)%0 only for
E E';„&E,„, see Sec. III A]; (ii) at high negative
values of y the integrand function in Eq. (61) is positive,
1.e.,

P,.( Iyl, E) & [I+(E—E;„)/fyl ]

&&P, I fyl[1+(E E;„)/lyl]—,EI,
because the spectral function has to decrease faster than
k at high k, due to the normalization condition [Eq.
(5)], and then dB /dy & 0. As a consequence, if the bind-
ing correction is neglected, one gets a lower bound of the
momentum distribution at high k.

The question of the knowledge of the experimental
asymptotic scaling function F(y), i.e., the basic quantity
which is necessary in order to obtain the nucleon momen-
tum distribution, appears to be a delicate one. As a
matter of fact, a careful plot of the experimental data
versus the momentum transfer for fixed values of y,
shows (see, e.g., Refs. 16 and 17 and Sec. IV) that at large
values of y, a clear scaling violation is present, whose ori-
gin has to be ascribed to the FSI; in fact, the data de-
crease with momentum transfer, instead of increasing, as
predicted by the PWIA (see Sec. IIB3). In Ref. 16, the
contribution of the FSI in the deuteron, calculated within
an exact treatment of the two-body continuum states, '

was subtracted from the experimental data and a reliable
asymptotic scaling function was obtained. In the case of
He, for which a full calculation of the FSI in terms of

realistic interactions is still waited for, the asymptotic
scaling function was obtained in Ref. 17 by considering
only the experimental data at the highest values of the
momentum transfer. Such a procedure, which entirely
relies on the expectation that the available data at high
momentum transfer are not affected by the FSI, is not a
completely satisfactory one. A more reliable approach is

presented in this paper, where the asymptotic scaling
function has been obtained by an extrapolation procedure
which, in principle, allows one to obtain the asymptotic
scaling function even if the experimental data are affected
by FSI. Such an approach is illustrated in the next sec-
tion.

IV. THE EXPERIMENTAL SCALING FUNCTION
AND ITS ASYMPTOTIC VALUE FOR FEW-BODY

SYSTEMS AND COMPLEX NUCLEI

F)(q,y) =F(y)+F(, )(y)/q

+[F( ~)(y)/q +F( 3)(y)/q'+ ] . (62)

The first, q-independent term on the right-hand side

Using the definition of the scaling variable according to
Eqs. (20) and (21), the relativistic off-shell electron-
nucleon cross section o.,& from Ref. 32 and the experi-
mental inclusive cross section o.

~ from Ref. 19 ( He), Ref.
22 ( He, ' C, Fe) and Ref. 23 (nuclear matter), the ex-
perimental scaling function FP(q, y) [Eq. (33)] was ob-
tained. The results are presented in Fig. 1 where the
well-known general features of the scaling function,
namely, a qualitative scaling behavior for y &0 and a
gross violation of scaling for y )0, can be seen. It is
clear, however, that from such a plot it is hard to assess
whether, for a fixed value of y & 0, scaling really occurs.
In Refs. 16 and 17 the scaling functions of H and He
have been plotted versus q for fixed values of y, and a re-
gion where scaling is violated was clearly singled out. As
a matter of fact, at high negative values of y, F)")'(q,y)
exhibits two systematic features: (i) a sharp fall off at low
values of q; (ii) a slower, but still persisting decrease at
higher values of q. The first feature can be ascribed to
the effect of FSI, whereas the second one has been inter-
preted as the result of the opposite effects of the contri-
bution from FSI and from the high removal energy tail of
the spectral function; as a matter of fact, due to the form-
er the scaling function decreases as q increases, whereas
due to the latter the scaling function increases. Both
features, observed in He and He, appear to be a general
feature of nuclei, as it is shown in Fig. 2, where the values
of the experimental scaling function, averaged in a range
of +50 MeV/c around the fixed values of y, are reported
versus q for He and Fe. Therefore, it is legitimate to
raise the question as to whether present experimental
data at the highest values of the momentum transfer
could be assumed to represent the asymptotic limit of the
scaling function. In order to be able to obtain the latter
from the available experimental data even if they are
affected by FSI, the following approach has been
developed (see also some preliminary results presented in
Ref. 38). Let us assume that for large values of q, F (q, y))
can be represented by a series expansion in inverse
powers of q
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type (62) has been first introduced in Ref. 43 in the study
of neutron scattering from liquid Helium, with the aim of
obtaining the explicit expressions of F( „1(y) starting
from a theoretical description of the inelastic response.
Recently, in Ref. 13 a similar approach has been extend-
ed to electron scattering by nuclei adopting nonrelativis-
tic kinematics; in such a case the first term of the expan-
sion is the longitudinal momentum distribution f (y),

whereas F( i)(y) can be expressed in terms of the ele-
mentary NN interaction. In these papers the theoretical
convergence of the expansion (62) was investigated by
model calculations of the first few terms F( „1(y); in this
paper we attempt at investigating the experimental validi-
ty of such a convergence; as a matter of fact, the observa-
tion of a linear behavior of F, (y, q) for large values of q
would represent experimental evidence of the conver-

(a) 4He (b) 56Fe
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FIG. 2. (a) The experimental scaling function [Eq. (33)] of He vs momentum transfer. The data points represent the average
values of F;" (q,y) in a range of +50 MeV around fixed values of y [Eq. (21)]. The relativistic off-shell electron-nucleon cross section
and the nucleon form factors are as in Fig. 1(a); the data are from Ref. 19 and Ref. 22. (b) The same as (a), but for Fe. The data are
the same as in Fig. 1(d).
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gence of the expansion (62).
The experimental scaling functions for He, He, ' C,

56Fe, and nuclear matter, plotted versus 1/q for various
values of y, are shown in Fig. 3, where the linear fit of the
data at low values of 1/q is also shown (only data at
y/q (C, with C ranging from 0.3 to 0.5 for the various
nuclei, were considered in the fit). The results presented

in these figures deserve the following comments.
(i) For y ~ —400 MeV/c, most data show an apparent

linear behavior which, for larger values of ty~, seems to
survive only at 0.1 fm ~ 1/q (0.2 fm.

(ii) Except for He and He, the quality of the data for
y & —500 MeV/c is such that a reliable extrapolation to
1/q =0 cannot be obtained.
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FIG. 3. (a) The experimental scaling function [Eq. (33)] of 'He vs the inverse momentum transfer. The data points represent the

average values of F i" (q, y) in a range of +50 MeV around fixed values of y [Eq. (21)]. The relativistic oF-shell electron-nucleon cross

section and the nucleon form factors are as in Fig. 1(a). The straight line represents a least square fit of the data at highest momen-

tum transfers (see text). The data are the same as in Fig. 1(a). (b) The same as (a), but for He. The data are the same as in Fig. 2(a).

(c) The same as (a), but for ' C. The data are the same as in Fig. 1(c). (d) The same as (a), but for ' Fe. The data are the same as in

Fig. 1(d). (e) The same as (a), but for nuclear matter. The data are the same as in Fig. 1(e).
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(iii) The asymptotic value is systematically lower than
the points at the highest values of q; this means that even
these points are affected by FSI.

As it is clear from Figs. 1 and 2, at y =0 the scaling be-
havior strongly deteriorates as q increases, which
represents clear evidence of the contribution from inelas-
tic channels, which become dominant at values of the
momentum transfer much larger than the value, q, cor-
responding to the pion production kinematical threshold.
For example, at y =0 one has q =604 MeV/c for He,
whereas a nonscaling behavior begins only at q «1500
MeV/c [see Fig. 2(a)]. As one moves to negative values
of y, i.e., to co&m „k, the threshold for inelastic channels
increases and such a contamination should decrease (as a
matter of fact, for He at y= —500 MeV/c, one has
q„=1258 MeV/c). In order to have a qualitative idea on
the contamination from inelastic channels in the data of
Fig. 3 at y & 0, the following procedure has been adopted:

terms of the type g;„(y,q)=a(y)(q —
q )+b(y)(q —

q )

or g;„(y,q)=c(y)(q —
q )

'~' were assumed to represent
the effect of inelastic channels near the threshold: they
were added to Eq. (62) for q &q, and the fitting pro-
cedure was repeated, with the result that the obtained
values of F(y) change by —10% for y (0. Such a result
seems to be in line with the results of Ref. 18, where the
inelastic contributions in the deuteron at y (0 were
found to be at most of the order of 20%, for values of the
momentum transfer as those considered in this paper.
Although a definite answer to the problem of inelastic
contributions in complex nuclei can only be given by a
dynamical calculation, the situation appears therefore
different from the one presented in Ref. 30, where the in-
elastic channel contributions were viewed as a serious
obstacle in extracting information on nucleon properties
in the medium from quasielastic inclusive scattering at
co & cop k since in that work experimental data for H
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were used up to values of the momentum transfer much
higher than those considered here.

The experimental asymptotic scaling functions for He,
He, ' C, Fe, and nuclear matter, obtained from the

linear fits by the intercepts at 1/q=0, are presented in
Fig. 4, where the solid lines represent an analytic interpo-
lation that will be used in the next section to obtain the
nucleon momentum distribution. It has to be noticed
that at large values of ~y~ the error bars are very large,
and that for y & —500 MeV/c, the asymptotic scaling
function cannot even be determined from the present
data, except for He and He. Experimental data of

higher quality in the region 5 fm ' ~ q ~ 10 fm ' would
be therefore of extreme usefulness in order to obtain the
scaling function for y ~ —500 MeV/c and to reduce the
uncertainty in its asymptotic value in the region —500
MeV/c ~y ~ —300 MeV/c. We would like to point out,
in this respect, that the asymptotic scaling function can-
not be simply determined by increasing the value of the
momentum transfer, for in the very asymptotic limit
q ~ ~, also co~ ~, and the contribution from the quasi-
elastic cross section to the inclusive cross section will be
vanishing, due to the inelastic channels.
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FIG. 4. (a) The experimental asymptotic scaling function of He (solid square), obtained using the intercepts of the straight lines
shown in Fig. 3(a) [Eq. (62)]; the error bars include the statistical uncertainties on the intercepts. The solid line is a polynomial inter-
polation of the data The dashed . line is the quantity B(y) [Eq. (59)] calculated with the realistic spectral function of Ref. 2. (b) The
same as (a), but for He. The dashed line is the quantity B (y) [Eq. (59)] as calculated in Ref. 4.l. (c) The same as (b) but for "C
The same as (b), but for ' Fe. (e) The same as (b), but for nuclear matter.
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V. THE NUCLEON MOMENTUM DISTRIBUTION

A. Evaluation of the binding correction

Having at disposal the experimental asymptotic scaling
function F(y ), the momentum distribution can be ob-
tained from Eq. (60), provided the binding correction
dB/dy is estimated. The binding correction for He eval-
uated with exact spectral functions turned out to be only
a small one, at least up to k=500 MeV/c. ' For the
complex nuclei analyzed in this paper, no calculation of
the spectral function at the level of accuracy reached in
He exists so far, apart from nuclear matter, whose spec-

tral function has been obtained by several groups,
in particular in Ref. 40, where relistic NN interactions
have been used. In order to have a reliable estimate of
the binding correction for complex nuclei, we take advan-
tage of the results of Refs. 46 and 41.

In Ref. 46 a spectral function based on an extended
version of the few-nucleon-correlation model of Ref. 47
has been presented and shown to yield results, which, in
the region of k and E covered by present experimental
data on quasielastic cross sections at y &0, remarkably
agree with those predicted by exact spectral functions for
He and nuclear matter. The general structure of such a

spectral function is of the type (47), where Po(k, E) has
the form (48) for finite nuclei and the form (51) for nu-
clear matter, and P, (k, E) includes the nucleon momen-
tum and removal energy distributions generated by two-
nucleon correlations.

In Ref. 41 this spectral function has been evaluated for
He, ' C, Fe, and nuclear matter using momentum dis-

tributions obtained with many-body calculations which
employ realistic NN interactions. The results of these
calculations lead to hole state occupation probabilities
S =0.8, and particle state probability S, =0.2 for He
(Refs. 48 and 49) and for ' C (Refs. 6 and 50); these
values have also been assumed for Fe, while for nuclear
matter the values So =4'jno(k)k dk =0.75 and

Si =4njn (tk) .kdk =0.25 (Ref. 40) have been adopted.
In Ref. 41 the longitudinal momentum distribution f (y)
and the asymptotic scaling function F(y) for He, ' C,

Fe, and nuclear matter have been evaluated using the
above spectral functions and obtaining, by this way, the
binding correction B (y) =f(y) —F(y). The general re-
sults of Ref. 41 agree with the findings of Ref. 42 for He:
because of binding effects, the longitudinal momentum
distributions start to deviate from the asymptotic scaling
function at y= —300 MeV/c, and become an order of
magnitude larger at y = —600 MeV/c. The binding
corrections are shown in Fig. 4, whereas in Fig. 5 the lon-
gitudinal momentum distributions f (y) and the asymp-
totic theoretical scaling functions F (y ) for He and Fe
calculated in Ref. 41 are compared with the experimental
data and with our results for the asymptotic experimental
scaling function (similar results have been also obtained
for He, ' C, and nuclear matter).

The results presented in Figs. 4 and 5, deserve the fol-
lowing comments: (i) the binding correction to the scal-
ing function is very small in the region —150
MeV/c (y ~ 0, but becomes quite relevant at large values

of ~y~; this shows that quasielastic cross sections have to
be calculated in terms of spectral functions and not sim-

ply by convoluting the free electron-nucleon cross section
with the nucleon momentum distributions; such an ap-
proximation leads to large errors in kinematical regions
far from the quasielastic peak (i.e., far from co=to~„k); (ii)
although at y ~ —250 MeV/c the binding correction to
the scaling function is quite an appreciable one, it is fairly
constant in a wide range of ~y~; as a consequence, the
binding correction to the momentum distribution, given
by the derivative of B (y), is less than 20% for He up to
k=500 MeV/c (Ref. 17) and for He and ' C up to
k =400 MeV/c, while for Fe it is at most 41% and for
nuclear matter at most 60% up to k =350 MeV/c; (iii)
the theoretical asymptotic scaling function F(y) reason-
ably agrees with the experimental one, whereas the longi-
tudinal momentum distribution does not; such a disagree-
ment reAects the relevance of the removal energy distri-
bution at large values of ~y~; (iv) the differences between

4He

10

..p4

10

-500-700

10

(b)

-300

y (MeV/c)

56pe

—100

Fl exp(y)

~ 3595 30

~ 3595 25

+ 3595 20

100

CF'

p, 10

F exP(y)

o 3995 30

3595 39

~ 3595 30

~ 3595 25

-300

y (MeV/c)

—100 100

FIG. 5. (a) The experimental scaling function [Eq. (33)] of
He, obtained from the data at the highest values of the incident

electron energy. Triangles represent the experimental asymp-
totic scaling function F;"P(y) shown in Fig. 4(b). The solid line
is the theoretical scaling function F(y) [Eq. (27)], from Ref. 41;
the dashed line is the longitudinal momentum distribution f (y)
[Eq. (28)] calculated using the nucleon momentum distribution
of Ref. 48. (b) The same as (a), but for ' Fe. Triangles represent
the experimental asymptotic scaling function F&" (y) shown in
Fig. 4(d). The solid line is the theoretical scaling function F(y)
[Eq. (27)] and the dashed line is the longitudinal momentum dis-
tribution f (y) [Eq. (28)] as calculated in Ref. 41.
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the asymptotic experimental scaling function and the
data at finite values of q are large, even at q =2 GeV/c
[except for He, see Fig. 3(a)]; this indicates the relevance
of the FSI effects even at high, but finite values of the
momentum transfer.

In order to reduce the uncertainties due to binding
corrections, the measurement of the longitudinal
response function, for which the effects from non-
nucleonic degrees of freedom are of minor relevance,
would be extremely useful, for it would allow to obtain
the scaling function both at y & 0 and at y & 0, where, as
it is clear from Eq. (26), binding eFects act in opposite
directions. The theoretical scaling function for He re-
ported in Fig. 6 and calculated with the spectral function
of Ref. 2 shows that this is indeed the case and that the
binding effect is smaller at y &0. ' The same result ap-
pears to hold for complex nuclei as well. ' Therefore,
complementary information on the momentum distribu-
tion can be obtained from the experimental longitudinal
scaling function at positive values of y. It would be high-
ly desirable therefore if, in spite of the difhculties related
to the Rosenbluth separation, the experiments at high
momentum transfer which are under way, could pro-
vide some useful information on the scaling function at
y )0.

The theoretical results presented so far, were obtained
in terms of spectral functions containing the removal en-

ergy distribution generated by two-nucleon correlations.
For the sake of comparison with Ref. 17, the binding
corrections have also been evaluated with model spectral
functions in which only the average excitation energy of
the final nuclear system is considered, i.e., the spectral
function of Eq. (43) with P, (k, E)=n, (k)5(E E,„)for-
He, and the spectral function of Eq. (47) with

P&(k, E)=ni(k)5(E E, ) for com—plex nuclei; the values
of E,„and E, can easily be found from the energy
weighted sum rule
E„/~ =/e„/

=(1/2) j(E)—(T)(3 —2)/(2 —1)+(V3) j

(63)

10 3

where

( T ) =I [k /(2M)]P(k, E) d k dE

and (E)= J'EP(k, E) d k dE are the mean kinetic and
removal energies, respectively, ( V3) is the expectation
value of the three-body interaction (if any), and ~e„~ is
the binding energy per particle. For He one has
(E ) =E;„S„+E, S,„with S „=4~Jn „(k)k dk and

S„=4~fn,„(k)k dk, while for complex nuclei, within
our assumptions, (E)=EoSo+E,S, with
Eo=~-'r„~e.~~.. Since ~e„~, (T), (V, ), E.,„, e.,
S „S, , So, and S, are known, ' Eq. (63) allows one
to readily obtain the values of E, and E&. The binding
correction to the momentum distribution obtained with
these model spectral functions is less than 38% up to
k =500 MeV/c for He, while it is less than 39% for ' C
and less than 58% for Fe up to k =450 MeV/c.

B. The nucleon momentum distribution
in H, He, He, ' C, Fe, and nuclear matter

The nucleon momentum distributions have been ob-
tained by placing in Eq. (60) the asymptotic scaling func-
tion obtained in Sec. IV and the binding correction evalu-
ated according to the prescription discussed in the previ-
ous section. In Fig. 7 the results for H, He, "He, ' C,
56Fe, and nuclear matter are presented separately for
each nucleus, whereas in Fig. 8 they are displayed on the
same plot (the results for H, already published in Ref. 16
and obtained by explicitly taking into account the effects
of FSI, 'o are repeated here for the sake of completeness).
The solid squares in Fig. 7 represent our results from Eq.
(60) including the binding correction. The results ob-
tained by disregarding the binding correction fall within
the error bars, which reAect the uncertainties in the
determination of the asymptotic value of the sealing func-
tion. The momentum distributions obtained by our ap-
proach are compared in Fig. 7 with (i) the momentum
distributions obtained for H, He, and He, through the
exclusive H(e, e'p)n (Ref. 20), He(e, e'p)X (Ref. 21),
He(e, e'p) H (Refs. 55 and 56), and He(e, e'p)X (Ref.

56) reactions; (ii) the momentum distribution no(k) [Eq.
(53)] obtained from the ' C(e, e'p)"B* reactions; (iii)
the theoretical momentum distributions obtained within
many-body and mean Geld approaches. In what follows
these comparisons will be discussed in detail.
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FIG. 6. The theoretical scaling function of 'He (dashed line)

for negative and positive values of y, calculated using the spec-
tral function of Ref. 2. The solid line represents the longitudi-
nal momentum distribution f (y) [Eq. (28)].

H and He nucles

The deuteron is an ideal system to check the sealing
hypothesis. The reason is twofold: (i) the FSI, i.e., the
contribution from the continuum states of the two-body
system, can be calculated exactly, and (ii) the y-scaling
analysis of the experimental data is free from the ambi-
guities due to binding effects. The main correction to the
inclusive quasielastic (e, e') cross sections at cu(co~„k is
represented by the FSI, whose effects have been subtract-
ed in Ref. 16 from the experimental data; on the other
hand, the main correction;o the PWIA in exclusive
(e, e'p) data, arises from FSI and MEC, which, likewise,
in Refs. 10 and 20 have been subtracted from the data in
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FIG. 7. (a) the nucleon momentum distribution n (k) in the deuteron. Solid squares: n (k) extracted in Ref. 16 from the experi-
mental inclusive cross sections H(e, e')pn, taking the effects of FSI explicitly into account using the results of calculations from Ref.
10. Triangles and dots: n (k) extracted from the experimental exclusive cross sections in Refs. 10 and 20, respectively. The solid and
dashed lines represent n (k) obtained from the RSC (Ref. 57) and Paris (Ref. 58) interactions, respectively. The normalization of n (k)
is In(k)d k =1 (after Ref. 16). (b) The nucleon momentum distribution n (k) in He, obtained from Eq. (60) using the experimental

asymptotic scaling function F;"P(y) shown in Fig. 4(a). Solid squares represent n (k) obtained from Eq. (60), calculating the binding
correction [Eq. (61)] with the realistic spectral function of Ref. 2. The error bars include the statistical uncertainties of the asymptot-
ic scaling function [see Fig. 4(a)]. Diamonds and triangles represent n (k) and ng„(k), respectively, as obtained (Ref. 21) from the ex-
clusive processes He(e, e'p)d and He(e, e'p)np including the FSI and MEC corrections, evaluated according to Ref. 9. Solid and
dashed lines: the total proton momentum distribution n (k) [Eq. (44)j and the ground component n~„(k) [Eq. (45)], respectively, as
obtained in Ref. 2 from the RSC (Ref. 57) interaction. Dotted line: n (k) as evaluated in Ref. 61, using the Paris (Ref. 58) interaction.
The normalization of n (k) is as in (a). (c) The same as in (b), but for He. Solid squares represent n (k) obtained from Eq. (60), calcu-
lating the binding correction [Eq. (61)] using the spectral function of Ref. 41. The error bars include the statistical uncertainties of
the asymptotic scaling function [see Fig. 4(b)]. Diamonds and triangles represent n (k) and ng„(k), respectively, obtained from the ex-
clusive processes He(e, e'p)'H (Refs. 55 and 56) and He(e, e'p)X(Ref. 56). Dotted and dashed lines: n(k) [Eq. (44)] and ng„(k) [Eq.
(45)], respectively, obtained in Ref. 48 from the RSC (Ref. 57) interaction. Solid line: n (k) obtained in Ref. 3, using the RSC (Ref.
57) interaction. The normalization of n (k) is as in (a). (d) The same as in (b), but for C. The error bars include the statistical uncer-
tainties of the asymptotic scaling function [see Fig. 4(c)]. Triangles represent no(k) obtained (Ref. 53) from the exclusive process
' C(e, e'p)''B*. Solid and dashed lines: n(k) [Eq. (44)] and no(k) [Eq. (53)] obtained in Ref. 6 from the RSC (Ref. 57) interaction.
Dotted line: n (k) obtained within the Hartree-Fock approximation [Eqs. (50), (52), and (53)]. The normalization of n (k) is as in (a).
(e) the same as in (b), but for Fe. The error bars include the statistical uncertainties of the asymptotic scaling function [see Fig.
4(d)]. Solid line: n (k) [Eq. (52)], obtained from the spectral function of Ref. 41. Dotted line: n (k) obtained within the Hartree-Fock
approximation [Eqs. (50), (52), and (53)]. The normalization of n (k) is as in (a). (fl The same as (b), but for nuclear matter. The error
bars include the statistical uncertainties of the asymptotic scaling function [see Fig. 4(e)j. Solid line: n (k) [Eq. (52)], obtained in Ref.
4(a) from the RSC (Ref. 57) interaction. Dotted line: n (k) for a Fermi gas. The normalization of n (k) is as in (a).
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order to obtain the momentum distribution. It can be
seen from Fig. 7(a) that these independent procedures
lead to momentum distributions which are in very good
agreement with each other; such an agreement, which is a
remarkable result in view of the totally different momen-
tum transfer involved in the two experiments (q (2.5
fm ' and q & 5 fm ' in exclusive and inclusive experi-
ments, respectively), makes us confident that the quantity
shown by the solid squares in Fig. 7(a) does indeed
represent the nucleon momentum distribution. The com-
parison with theoretical momentum distributions, ob-
tained from nonrelativistic wave functions corresponding
to Reid soft core (RSC) and Paris interactions, is im-
pressive; it appears therefore that up to k =600 MeV/c a
nonrelativistic description of the two-body system is in
agreement with the experimental data. In order to be
able to distinguish between different interactions and to
show the possible presence of relativistic effects, ' more
accurate experimental data at high values of ~y~ are need-
ed, which would allow one to investigate the momentum
distribution at higher values of k.

As far as He is concerned, recent experimental data
on the processes He(e, e'p)d and He(e, e'p)np in the re-
gion of removal energy 5.5 MeV & E & 90 MeV allowed
one to obtain ' the separate contributions n „(k) and
n„(k) and, consequently, the momentum distribution
n (k) =ng„(k)+n, (k). The momentum distribution was
also obtained from y scaling in Ref. 17, and found to gen-
erally agree with the one resulting from (e, e'p ) reactions,
except in the region 250 MeV/c (k (350 MeV/c, where
the former turned out to be appreciably higher than the
latter. The present, improved analysis of y-scaling data,
which, as explained in Sec. IV, allows one to obtain in a
model-independent way the asymptotic scaling function,
makes clear the origin of such a discrepancy: it was not
due to any exotic effect, but it simply arose from our pre-
vious analysis of y scaling, in which the asymptotic scal-
ing function was identified with F(q, y) at the highest
values of q. According to the results presented in Fig. 3,
it is clear that F(q, y) at q= 10 fm ' is higher than the
true asymptotic limit. When the improved asymptotic
scaling function shown in Fig. 4(a) is used, the obtained
momentum distribution agrees in a satisfactory way with
the one resulting from He(e, e'p )X reactions, as it can be
seen from Fig. 7(b). This figure also shows that (i) as in

the case of the deuteron, the experimental momentum
distributions agree very well, up to k 600 MeV/c, with
theoretical calculations performed with realistic nonrela-
tivistic potential models of the NN interaction; ' ' (ii) in
agreement with the general argument and results of Ref.
2, the high momentum part of n (k) is almost entirely
determined by n, (k), i.e., by that part of the momentum
distribution which is generated by XN correlations.

2. 4He and ~2C nuclei

The nucleon momentum distributions in He and ' C,
extracted from our analysis, are compared with the ones
obtained from (e, e'p) reactions and with theoretical cal-
culations in Figs. 7(c) and 7(d), respectively. Theoretical
momentum distributions for He (Refs. 3 and 48) and ' C
(Refs. 6 and 50) have been obtained within many-body
approaches employing realistic XN interactions. Re-
cent exclusive experimental data on the processes
He(e, e'p) H (Refs. 55 and 56) and He(e, e'p )X (Ref. 56)

in the kinematical region 20 MeV E &150 MeV, yield
preliminary information on n „(k) and n, (k) in the re-
gion 0 & k & 3 fm '; for ' C, exclusive experiments
are, on the contrary, still limited to the channel
' C(e, e'p)"8", which can yield information on no(k)
only. Some features of the results presented in Figs. 7(c)
and 7(d) are in full agreement with the results obtained
for He, namely, (i) at small values of k, the momentum
distribution n (k) is mainly determined by ng„(k) in He
and by no(k) in ' C [dashed lines and triangles in Figs.
7(c) and 7(d)], whereas at high values of k (k & 350
MeV/c) it is almost exhausted by n,„(k) and by n, (k), re-
spectively; (ii) n~„(k)[no(k)] obtained from exclusive ex-
periments is lower than the total momentum distribution
obtained from inclusive experiments; (iii) for ~He, a quali-
tative overall agreement between the momentum distri-
butions extracted from inclusive and exclusive data is ob-
served, whereas for ' C, due to the lack of experimental
data for the process ' C(e, e'p)X at high values of E,
which give information on n, (k), a full comparison with
exclusive data is not possible. For ' C the apparent
disagreement between the experimental results and the
theoretical calculations at the lowest values of k deserves
some comments. As already pointed out in Sec. IV, some
contamination by contributions from inelastic channels
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might be present in the asymptotic scaling function for
low values of ~y~ and, correspondingly, in the momentum
distribution at low values of k. At the same time, the tri-
angles in Fig. 7(d) have been obtained from exclusive ex-
periments by integrating the cross section only in a limit-
ed range of removal energies, viz. 15 MeV & E & 50
MeV, which, in principle, might not be sufhcient to in-
clude all the strength, due to the fragmentation of the 1S
hole in the residual ( 3 —1) nucleus; moreover, the
correction for FSI, evaluated in terms of an unusual opti-
cal potential model, might not be a sufBciently accurate
one for deep hole states.

The novel feature of our results (which is also common
to Fe and nuclear matter, see later on) concerns, howev-
er, the high momentum part of n (k), which is strongly
underestimated by theoretical models based upon the
concept of independent particle motion. Since for
k ~ 350 MeV/c the disagreement between mean field pre-
dictions [see the dotted line in Fig. 7(d)] and experimental
data concerns orders of magnitude, it is unlikely that it
could be ascribed to some drawbacks of the analysis of in-
clusive and exclusive experimental data in terms of
momentum distributions. As far as the analysis of in-
clusive data is concerned, we wish only to note here that
at high k the momentum distribution obtained neglecting
the binding correction, which, as already pointed out in
Sec. III B, is a lower bound of n (k), is itself orders of
magnitude larger than the mean field predictions.

VI. MEAN FIELD APPROACHES,
NN CORRELATIONS, AND NUCLEON

MOMENTUM DISTRIBUTIONS

The relevant eft'ect produced by NN correlations on the
one-body nondiagonal density matrix p(z, z'), i.e., on the
momentum distribution [cf. Eq. (44)], has been discussed
in several papers. In Ref. 62 it has been shown that a sin-
gle Slater determinant cannot reproduce simultaneously
the density and the momentum distribution of a correlat-
ed system. Such a conclusion was confirmed in Ref. 63
using general arguments based on the experimental and
theoretical ' observation of a large depletion of the nu-
cleon Fermi sea. In Ref. 2, starting from the general
definition of the momentum distribution in terms of
p(z, z'), and introducing the overlap integral [Eq. (4)], the
exact representation given by Eqs. (43)—(46) has been ob-
tained. Such a representation clearly displays the role of
NN correlations: as a matter of fact, it can be clearly
seen that, if the ground-state wave function of the target,
%z, and the wave functions of the final ( A —1) system,

are described by Hartree-Fock Slater deter-
minants, the ground state can couple only to the states of
the final ( 3 —1) system which are hole states of the tar-
get and, consequently, P, (k, E) [and ni(k)] will be van-
ishing. Qn the other hand, if two-particle —two-hole ad-
mixtures generated by correlations are considered,
Pi(k, E) [and n i(k)] will differ from zero, due to the cou-
pling of +z to one-particle —two-hole states which are
present in Vfz

3. I'e and nuclear matter

For Fe and heavier nuclei, no data exist to date on
(e, e p) reactions. The momentum distributions obtained
by our analysis represent therefore the only ones extract-
ed from experimental data which are available at present.
The comparison with theoretical momentum distribu-
tions [see Figs. 7(e) and 7(f)] shows the same trend ob-
served in lighter systems, namely, an overall agreement,
particularly at high values of k, with calculations which
include NN correlations and, at the same time, a
disagreement by orders of magnitude with mean field re-
sults.

Some remarks concerning the results for nuclear
matter are also in order: the obtained momentum distri-
bution in the region 200MeV/c ~k ~300MeV/c, i.e.,
near the Fermi surface, resembles more the one of a
heavy nucleus (e.g. , Fe), rather than the one of an ex-
tended system with a sharp boundary at k =kF. Such a
behavior could be ascribed to our procedure for obtaining
the momentum distribution from the asymptotic scaling
function, which is based upon average values of the ex-
perimental scaling function in ranges of +50 MeV/c
around each value of y (see Sec. IV). As a matter of fact,
however, the scaling functions obtained from the experi-
mental cross sections for Fe and from the extrapolated
data for nuclear matter which are shown in Fig. 1 look
very similar in the region 200 MeV/c ~ k ~ 300 MeV/c.
More and better (e, e') experimental data would be of ex-
treme usefulness in clarifying such a relevant point.
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FIG. 8. The nucleon momentum distribution n(k) for H
(~), He (X), He (0), ' C (H), and Fe ( X ) obtained from the
asymptotic scaling function (see Fig. 7). Dot-dashed line:
theoretical n (k) for H obtained from the RSC (Ref. 57) interac-
tion; dashed line: n(k) for He (Ref. 2); dotted line: n(k) for
He (Ref. 3); double-dot-dashed line: n (k) for ' C (Ref. 6); thin

solid line: n (k) for Fe (Ref. 41); and thick solid line: n (k) for' Fe, evaluated within the Hartree-Fock approximation.
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A detailed investigation of the momentum distribution
and its relation with the spectral function through Eq.
(29), has been presented in Ref. 2 for the case of the three
nucleon system described by an exact spectral function.
The main outcome of such an investigation was as fol-
lows: the momentum distribution at k + 2 fm ' is entire-
ly exhausted by n, (k), and, more important, the upper
limit of integration, which is necessary to saturate the
sum rule [Eq. (27)], sharply increases with k [e.g. , for
k) 1.5 fm ', the integration over the removal energy
must be extended up to an upper limit larger than 50
MeV, while at k =4 fm ' an upper limit of 300 MeV is
needed (cf. Fig. 3 of Ref. 2)]; this means that the high
momentum components are associated with virtual exci-
tations of the "spectator" pair with values of the energy,
which are so high that they can be produced only by
strong NN correlations. This result appears to be quite a
general one, for it has been confirmed in the case of nu-
clear matter and of complex nuclei. '

It is therefore demonstrated that the high momentum
components in a nucleus are always associated with high
virtual excitations of the spectator ( 3 —1) system, i.e., to
the integral of P&(k, E) for high values of E, much larger
than the typical shell-model separation energies; these
high excitations are absent in a mean field approach,
where the behavior of the momentum distributions is
governed by the size of the system and by the values of
the single particle energies; this is the reason why, at high
values of k, the mean field momentum distributions are
orders of magnitude less than the momentum distribu-
tions for correlated nucleons. The link between the high
momentum components and the high values of the remo-
val energies can be qualitatively explained in terms of the
so called two-nucleon correlation model, in which the
high momentum components of a nucleon are generated
by its hard interaction with a single nucleon, whereas the
remaining ( 3 —2) nucleons (the soft nucleons) move in
the mean field with center of mass momentum K~ 2=0;
for a heavy nucleus, for which recoiling energy can be
disregarded, the excitation energy of the ( 3 —1) system
is therefore centered at E~~", =k l(2M), which, for,
e.g. , k =3 fm ', is E~*

&
=200 MeV))EO=20 —30 MeV

(see Sec. VA). Such a picture predicts similar behavior
of the high momentum part of n (k) independently of 3,
in agreement with microscopic calculations of the
momentum distributions in terms of realistic NN interac-
tions (see Refs. 2 —6).

To sum up, the nucleon momentum distributions have
very stringent and peculiar features: (i) at low values of k
(k ~ 1 fm '), the shape of n (k) for a given value of A is
mainly determined by no(k) and closely resembles the
one predicted by the mean field approach [dashed lines in
Figs. 7(d) and 7(e)], apart from the different normaliza-
tion due to the depletion of the hole states generated by
correlations; the shape is different for different nuclei,
particularly near k =0, due to the different asymptotic
behavior of the hole state wave functions; (ii) at high
values of k (k ~ 2 fm '), n (k) is, on the contrary, almost
entirely determined by n, (k) and, for the reasons given
above in terms of the two-nucleon correlation model, its
shape is predicted to be fairly independent of A. It is

very gratifying to see (cf. Fig. 8) that, in spite of the large
error bars, the momentum distributions extracted from
our analysis clearly display both features. We would like
to point out that feature (ii) is not trivial at all, and that
its observation by our analysis represents a convincing
evidence of correlation effects in nuclei.

VII. SUMMARY AND CONCLUSIONS

In our paper the question has been addressed as to
whether the nucleon momentum distribution in nuclei
can be obtained from inclusive experiments in the y-
scaling region. The answer to such a question is not a
trivial one. As a matter of fact, because of FSI effects,
which are present at finite values of the momentum
transfer, and because of binding effects, which, due to rel-
ativistic kinematics, are present even in the asymptotic
limit, a direct relation between the momentum distribu-
tion and the scaling function at finite q does not exist.

Any attempt at extracting the momentum distribution
from y scaling has therefore to face the problem of es-
timating both the effects from FSI and from nucleon
binding. Accordingly, we have developed a method in
which: (i) a proper extrapolation procedure of the experi-
mental data is adopted in order to obtain the asymptotic
scaling function, even if the available experimental data
are affected by FSI effects; (ii) the binding correction to
the momentum distribution is explicitly evaluated in
terms of spectral functions. By such a procedure the
momentum distributions of a series of nuclei, ranging
from deuteron to nuclear matter, have been obtained. At
large values of the nucleon momentum k, the momentum
distributions have large error bars which reAect our poor
knowledge of the experimental scaling function in the
relevant kinematical ranges. The present experimental
data allowed us to determine the nucleon mornenturn dis-
tributions only up to k =550 MeV/c for light nuclei, and
k =450 MeV/c for heavy nuclei; this region, however, is
sufficiently wide to make conclusive statements on the
breaking down of the mean field theories. As far as the
theoretical bias in evaluating the binding correction is
concerned, we would like to point out once again that the
model dependence due to the evaluation of the binding
correction with a specific spectral function does not affect
our conclusions, since, as explained in Sec. III B, at high
k the momentum distribution extracted from the experi-
mental data with no binding correction represents a
lower bound to n (k) and is orders of magnitude higher
than the mean field predictions. The agreement with the
exclusive (e, e'p) data, whenever they exist, and with the
results of many-body calculations which include the
effects from NN correlations, generated by realistic NN
interactions, allows one to draw a consistent picture of
the nucleon momentum distributions.

Some remarks are in order concerning kinematics. A
consistent treatment would require the use of relativistic
kinematics to describe both the scattering process and the
bound nucleon dynamics, which appears to be possible, at
the moment, only within the relativistic Fermi gas. In
our approach full relativistic kinematics together with
nonrelativistic spectral functions are used, which might
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appear not fully consistent. We believe, however, that
our approach is a rational one, since only the region of
the spectral function with k &3 fm ' is relevant in our
analysis.

driven the present accuracy of the experimental data
on inclusive cross section, our approach was aimed at in-
vestigating only the general, overall features of the nu-
cleon momentum distributions as described in the previ-
ous section. More precise data and better estimates of
the binding correction would certainly affect our results,
but even a 50% modification of the high momentum part
of the extracted n (k) would not aff'ect the basic validity
of our conclusions. With the advent of new high energy
and continuous beam accelerator facilities, it would be
possible not only to obtain the nucleon momentum distri-
bution at higher values of momenta, but, at the same
time, to carefully investigate possible relativistic effects or
differences in the two-nucleon interactions which, at the
moment, are both expected to fall within the present
large error bars of n (k).

When our paper was almost completed, we became
aware of a review paper on y scaling, based on a forrnal-
ism sharing many points with our approach reviewed in
Sec. II 8; in particular we would like to point out that the
authors of Ref. 67 use a definition of the scaling function,
which is the same as the one adopted in this paper [see
Eqs. (33) and (39)], so that the experimental scaling func-
tions they obtain fully agree with the ones presented here
in Fig. 1.
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